11,596 research outputs found

    Multi-Objective Differential Evolution for Automatic Clustering with Application to Micro-Array Data Analysis

    Get PDF
    This paper applies the Differential Evolution (DE) algorithm to the task of automatic fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performances of two multi-objective variants of DE over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of the multi-objective DE-variants have also been contrasted to that of two most well-known schemes of MO clustering, namely the Non Dominated Sorting Genetic Algorithm (NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results using six artificial and four real life datasets of varying range of complexities indicate that DE holds immense promise as a candidate algorithm for devising MO clustering schemes

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Procedural function-based modelling of volumetric microstructures

    Get PDF
    We propose a new approach to modelling heterogeneous objects containing internal volumetric structures with size of details orders of magnitude smaller than the overall size of the object. The proposed function-based procedural representation provides compact, precise, and arbitrarily parameterised models of coherent microstructures, which can undergo blending, deformations, and other geometric operations, and can be directly rendered and fabricated without generating any auxiliary representations (such as polygonal meshes and voxel arrays). In particular, modelling of regular lattices and cellular microstructures as well as irregular porous media is discussed and illustrated. We also present a method to estimate parameters of the given model by fitting it to microstructure data obtained with magnetic resonance imaging and other measurements of natural and artificial objects. Examples of rendering and digital fabrication of microstructure models are presented

    Modelling Neuron Morphology: Automated Reconstruction from Microscopy Images

    Get PDF
    Understanding how the brain works is, beyond a shadow of doubt, one of the greatest challenges for modern science. Achieving a deep knowledge about the structure, function and development of the nervous system at the molecular, cellular and network levels is crucial in this attempt, as processes at all these scales are intrinsically linked with higher-order cognitive functions. The research in the various areas of neuroscience deals with advanced imaging techniques, collecting an increasing amounts of heterogeneous and complex data at different scales. Then, computational tools and neuroinformatics solutions are required in order to integrate and analyze the massive quantity of acquired information. Within this context, the development of automaticmethods and tools for the study of neuronal anatomy has a central role. The morphological properties of the soma and of the axonal and dendritic arborizations constitute a key discriminant for the neuronal phenotype and play a determinant role in network connectivity. A quantitative analysis allows the study of possible factors influencing neuronal development, the neuropathological abnormalities related to specific syndromes, the relationships between neuronal shape and function, the signal transmission and the network connectivity. Therefore, three-dimensional digital reconstructions of soma, axons and dendrites are indispensable for exploring neural networks. This thesis proposes a novel and completely automatic pipeline for neuron reconstruction with operations ranging from the detection and segmentation of the soma to the dendritic arborization tracing. The pipeline can deal with different datasets and acquisitions both at the network and at the single scale level without any user interventions or manual adjustment. We developed an ad hoc approach for the localization and segmentation of neuron bodies. Then, various methods and research lines have been investigated for the reconstruction of the whole dendritic arborization of each neuron, which is solved both in 2D and in 3D images

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain
    • 

    corecore