37 research outputs found

    Experience-driven optimal motion synthesis in complex and shared environments

    Get PDF
    Optimal loco-manipulation planning and control for high-dimensional systems based on general, non-linear optimisation allows for the specification of versatile motion subject to complex constraints. However, complex, non-linear system and environment dynamics, switching contacts, and collision avoidance in cluttered environments introduce non-convexity and discontinuity in the optimisation space. This renders finding optimal solutions in complex and changing environments an open and challenging problem in robotics. Global optimisation methods can take a prohibitively long time to converge. Slow convergence makes them unsuitable for live deployment and online re-planning of motion policies in response to changes in the task or environment. Local optimisation techniques, in contrast, converge fast within the basin of attraction of a minimum but may not converge at all without a good initial guess as they can easily get stuck in local minima. Local methods are, therefore, a suitable choice provided we can supply a good initial guess. If a similarity between problems can be found and exploited, a memory of optimal solutions can be computed and compressed efficiently in an offline computation process. During runtime, we can query this memory to bootstrap motion synthesis by providing a good initial seed to the local optimisation solver. In order to realise such a system, we need to address several connected problems and questions: First, the formulation of the optimisation problem (and its parametrisation to allow solutions to transfer to new scenarios), and related, the type and granularity of user input, along with a strategy for recovery and feedback in case of unexpected changes or failure. Second, a sampling strategy during the database/memory generation that explores the parameter space efficiently without resorting to exhaustive measures---i.e., to balance storage size/memory with online runtime to adapt/repair the initial guess. Third, the question of how to represent the problem and environment to parametrise, compute, store, retrieve, and exploit the memory efficiently during pre-computation and runtime. One strategy to make the problem computationally tractable is to decompose planning into a series of sequential sub-problems, e.g., contact-before-motion approaches which sequentially perform goal state planning, contact planning, motion planning, and encoding. Here, subsequent stages operate within the null-space of the constraints of the prior problem, such as the contact mode or sequence. This doctoral thesis follows this line of work. It investigates general optimisation-based formulations for motion synthesis along with a strategy for exploration, encoding, and exploitation of a versatile memory-of-motion for providing an initial guess to optimisation solvers. In particular, we focus on manipulation in complex environments with high-dimensional robot systems such as humanoids and mobile manipulators. The first part of this thesis focuses on collision-free motion generation to reliably generate motions. We present a general, collision-free inverse kinematics method using a combination of gradient-based local optimisation with random/evolution strategy restarting to achieve high success rates and avoid local minima. We use formulations for discrete collision avoidance and introduce a novel, computationally fast continuous collision avoidance objective based on conservative advancement and harmonic potential fields. Using this, we can synthesise continuous-time collision-free motion plans in the presence of moving obstacles. It further enables to discretise trajectories with fewer waypoints, which in turn considerably reduces the optimisation problem complexity, and thus, time to solve. The second part focuses on problem representations and exploration. We first introduce an efficient solution encoding for trajectory library-based approaches. This representation, paired with an accompanying exploration strategy for offline pre-computation, permits the application of inexpensive distance metrics during runtime. We demonstrate how our method efficiently re-uses trajectory samples, increases planning success rates, and reduces planning time while being highly memory-efficient. We subsequently present a method to explore the topological features of the solution space using tools from computational homology. This enables us to cluster solutions according to their inherent structure which increases the success of warm-starting for problems with discontinuities and multi-modality. The third part focuses on real-world deployment in laboratory and field experiments as well as incorporating user input. We present a framework for robust shared autonomy with a focus on continuous scene monitoring for assured safety. This framework further supports interactive adjustment of autonomy levels from fully teleoperated to automatic execution of stored behaviour sequences. Finally, we present sensing and control for the integration and embodiment of the presented methodology in high-dimensional real-world platforms used in laboratory experiments and real-world deployment. We validate our presented methods using hardware experiments on a variety of robot platforms demonstrating generalisation to other robots and environments

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Patient-specific simulation for autonomous surgery

    Get PDF
    An Autonomous Robotic Surgical System (ARSS) has to interact with the complex anatomical environment, which is deforming and whose properties are often uncertain. Within this context, an ARSS can benefit from the availability of patient-specific simulation of the anatomy. For example, simulation can provide a safe and controlled environment for the design, test and validation of the autonomous capabilities. Moreover, it can be used to generate large amounts of patient-specific data that can be exploited to learn models and/or tasks. The aim of this Thesis is to investigate the different ways in which simulation can support an ARSS and to propose solutions to favor its employability in robotic surgery. We first address all the phases needed to create such a simulation, from model choice in the pre-operative phase based on the available knowledge to its intra-operative update to compensate for inaccurate parametrization. We propose to rely on deep neural networks trained with synthetic data both to generate a patient-specific model and to design a strategy to update model parametrization starting directly from intra-operative sensor data. Afterwards, we test how simulation can assist the ARSS, both for task learning and during task execution. We show that simulation can be used to efficiently train approaches that require multiple interactions with the environment, compensating for the riskiness to acquire data from real surgical robotic systems. Finally, we propose a modular framework for autonomous surgery that includes deliberative functions to handle real anatomical environments with uncertain parameters. The integration of a personalized simulation proves fundamental both for optimal task planning and to enhance and monitor real execution. The contributions presented in this Thesis have the potential to introduce significant step changes in the development and actual performance of autonomous robotic surgical systems, making them closer to applicability to real clinical conditions

    Interpretation of Natural-language Robot Instructions: Probabilistic Knowledge Representation, Learning, and Reasoning

    Get PDF
    A robot that can be simply told in natural language what to do -- this has been one of the ultimate long-standing goals in both Artificial Intelligence and Robotics research. In near-future applications, robotic assistants and companions will have to understand and perform commands such as set the table for dinner'', make pancakes for breakfast'', or cut the pizza into 8 pieces.'' Although such instructions are only vaguely formulated, complex sequences of sophisticated and accurate manipulation activities need to be carried out in order to accomplish the respective tasks. The acquisition of knowledge about how to perform these activities from huge collections of natural-language instructions from the Internet has garnered a lot of attention within the last decade. However, natural language is typically massively unspecific, incomplete, ambiguous and vague and thus requires powerful means for interpretation. This work presents PRAC -- Probabilistic Action Cores -- an interpreter for natural-language instructions which is able to resolve vagueness and ambiguity in natural language and infer missing information pieces that are required to render an instruction executable by a robot. To this end, PRAC formulates the problem of instruction interpretation as a reasoning problem in first-order probabilistic knowledge bases. In particular, the system uses Markov logic networks as a carrier formalism for encoding uncertain knowledge. A novel framework for reasoning about unmodeled symbolic concepts is introduced, which incorporates ontological knowledge from taxonomies and exploits semantically similar relational structures in a domain of discourse. The resulting reasoning framework thus enables more compact representations of knowledge and exhibits strong generalization performance when being learnt from very sparse data. Furthermore, a novel approach for completing directives is presented, which applies semantic analogical reasoning to transfer knowledge collected from thousands of natural-language instruction sheets to new situations. In addition, a cohesive processing pipeline is described that transforms vague and incomplete task formulations into sequences of formally specified robot plans. The system is connected to a plan executive that is able to execute the computed plans in a simulator. Experiments conducted in a publicly accessible, browser-based web interface showcase that PRAC is capable of closing the loop from natural-language instructions to their execution by a robot

    Motion planning for manipulation and/or navigation tasks with emphasis on humanoid robots

    Get PDF
    This thesis handles the motion planning problem for various robotic platforms. This is a fundamental problem, especially referring to humanoid robots for which it is particularly challenging for a number of reasons. The first is the high number of degrees of freedom. The second is that a humanoid robot is not a free-flying system in its configuration space: its motions must be generated appropriately. Finally, the implicit requirement that the robot maintains equilibrium, either static or dynamic, typically constrains the trajectory of the robot center of mass. In particular, we are interested in handling problems in which the robot must execute a task, possibly requiring stepping, in environments cluttered by obstacles. In order to solve this problem, we propose to use offline probabilistic motion planning techniques such as Rapidly Exploring Random Trees (RRTs) that consist in finding a solution by means of a graph built in an appropriately defined configuration space. The novelty of the approach is that it does not separate locomotion from task execution. This feature allows to generate whole-body movements while fulfilling the task. The task can be assigned as a trajectory or a single point in the task space or even combining tasks of different nature (e.g., manipulation and navigation tasks). The proposed method is also able to deform the task, if the assigned one is too difficult to be fulfilled. It automatically detects when the task should be deformed and which kind of deformation to apply. However, there are situations, especially when robots and humans have to share the same workspace, in which the robot has to be equipped with reactive capabilities (as avoiding moving obstacles), allowing to reach a basic level of safety. The final part of the thesis handles the rearrangement planning problem. This problem is interesting in view of manipulation tasks, where the robot has to interact with objects in the environment. Roughly speaking, the goal of this problem is to plan the motion for a robot whose assigned a task (e.g., move a target object in a goal region). Doing this, the robot is allowed to move some movable objects that are in the environment. The problem is difficult because we must plan in continuous, high-dimensional state and action spaces. Additionally, the physical constraints induced by the nonprehensile interaction between the robot and the objects in the scene must be respected. Our insight is to embed physics models in the planning stage, allowing robot manipulation and simultaneous objects interaction. Throughout the thesis, we evaluate the proposed planners through experiments on different robotic platforms
    corecore