1,824 research outputs found

    Achievable Throughput of Multi-mode Multiuser MIMO with Imperfect CSI Constraints

    Full text link
    For the multiple-input multiple-output (MIMO) broadcast channel with imperfect channel state information (CSI), neither the capacity nor the optimal transmission technique have been fully discovered. In this paper, we derive achievable ergodic rates for a MIMO fading broadcast channel when CSI is delayed and quantized. It is shown that we should not support too many users with spatial division multiplexing due to the residual inter-user interference caused by imperfect CSI. Based on the derived achievable rates, we propose a multi-mode transmission strategy to maximize the throughput, which adaptively adjusts the number of active users based on the channel statistics information.Comment: 5 pages, 3 figures, submitted to 2009 IEEE International Symposium on Information Theor

    Multi-mode Transmission for the MIMO Broadcast Channel with Imperfect Channel State Information

    Full text link
    This paper proposes an adaptive multi-mode transmission strategy to improve the spectral efficiency achieved in the multiple-input multiple-output (MIMO) broadcast channel with delayed and quantized channel state information. The adaptive strategy adjusts the number of active users, denoted as the transmission mode, to balance transmit array gain, spatial division multiplexing gain, and residual inter-user interference. Accurate closed-form approximations are derived for the achievable rates for different modes, which help identify the active mode that maximizes the average sum throughput for given feedback delay and channel quantization error. The proposed transmission strategy is combined with round-robin scheduling, and is shown to provide throughput gain over single-user MIMO at moderate signal-to-noise ratio. It only requires feedback of instantaneous channel state information from a small number of users. With a feedback load constraint, the proposed algorithm provides performance close to that achieved by opportunistic scheduling with instantaneous feedback from a large number of users.Comment: 25 pages, 10 figures, submitted to IEEE Trans. Commun., March 201

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio

    Downlink SDMA with Limited Feedback in Interference-Limited Wireless Networks

    Full text link
    The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the accuracy of the transmit channel state information. In the broadcast channel, even without any network interference, it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to quantify the degradation in network performance due to residual self-interference as a function of key system parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent design choice for interference-limited wireless networks.Comment: Submitted to IEEE Transactions on Wireless Communication
    corecore