5,869 research outputs found

    Research Opportunities and Visions for Smart and Pervasive Health

    Get PDF
    Improving the health of the nation's population and increasing the capabilities of the US healthcare system to support diagnosis, treatment, and prevention of disease is a critical national and societal priority. In the past decade, tremendous advances in expanding computing capabilities--sensors, data analytics, networks, advanced imaging, and cyber-physical systems--have, and will continue to, enhance healthcare and health research, with resulting improvements in health and wellness. However, the cost and complexity of healthcare continues to rise alongside the impact of poor health on productivity and quality of life. What is lacking are transformative capabilities that address significant health and healthcare trends: the growing demands and costs of chronic disease, the greater responsibility placed on patients and informal caregivers, and the increasing complexity of health challenges in the US, including mental health, that are deeply rooted in a person's social and environmental context.Comment: A Computing Community Consortium (CCC) white paper, 12 page

    Psychological research in the digital age

    Get PDF
    The smartphone has become an important personal companion in our daily lives. Each time we use the device, we generate data that provides information about ourselves. This data, in turn, is valuable to science because it objectively reflects our everyday behavior and experiences. In this way, smartphones enable research that is closer to everyday life than traditional laboratory experiments and questionnaire-based methods. While data collected with smartphones are increasingly being used in the field of personality psychology, new digital technologies can also be leveraged to collect and analyze large-scale unobtrusively sensed data in other areas of psychological research. This dissertation, therefore, explores the insights that smartphone sensing reveals for psychological research using two examples, situation and affect research, making a twofold research contribution. First, in two empirical studies, different data types of smartphone-sensed data, such as GPS or phone data, were combined with experience-sampled self-report, and classical questionnaire data to gain valuable insights into individual behavior, thinking, and feeling in everyday life. Second, predictive modeling techniques were applied to analyze the large, high-dimensional data sets collected by smartphones. To gain a deeper understanding of the smartphone data, interpretable variables were extracted from the raw sensing data, and the predictive performance of various machine learning algorithms was compared. In summary, the empirical findings suggest that smartphone data can effectively capture certain situational and behavioral indicators of psychological phenomena in everyday life. However, in certain research areas such as affect research, smartphone data should only complement, but not completely replace, traditional questionnaire-based data as well as other data sources such as neurophysiological indicators. The dissertation also concludes that the use of smartphone sensor data introduces new difficulties and challenges for psychological research and that traditional methods and perspectives are reaching their limits. The complexity of data collection, processing, and analysis requires established guidelines for study design, interdisciplinary collaboration, and theory-driven research that integrates explanatory and predictive approaches. Accordingly, further research is needed on how machine learning models and other big data methods in psychology can be reconciled with traditional theoretical approaches. Only in this way can we move closer to the ultimate goal of psychology to better understand, explain, and predict human behavior and experiences and their interplay with everyday situations

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    Real-Time Purchase Prediction Using Retail Video Analytics

    Get PDF
    The proliferation of video data in retail marketing brings opportunities for researchers to study customer behavior using rich video information. Our study demonstrates how to understand customer behavior of multiple dimensions using video analytics on a scalable basis. We obtained a unique video footage data collected from in-store cameras, resulting in approximately 20,000 customers involved and over 6,000 payments recorded. We extracted features on the demographics, appearance, emotion, and contextual dimensions of customer behavior from the video with state-of-the-art computer vision techniques and proposed a novel framework using machine learning and deep learning models to predict consumer purchase decision. Results showed that our framework makes accurate predictions which indicate the importance of incorporating emotional response into prediction. Our findings reveal multi-dimensional drivers of purchase decision and provide an implementable video analytics tool for marketers. It shows possibility of involving personalized recommendations that would potentially integrate our framework into omnichannel landscape
    • …
    corecore