1,257 research outputs found

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data

    Full text link
    Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set.Comment: 24 pages, 10 figures. A version has been accepted by TPAMI on Aug 4th, 2015. Add footnote about how to train the model in practice in Section 5.1. arXiv admin note: substantial text overlap with arXiv:1305.530

    Temporal Cross-Media Retrieval with Soft-Smoothing

    Full text link
    Multimedia information have strong temporal correlations that shape the way modalities co-occur over time. In this paper we study the dynamic nature of multimedia and social-media information, where the temporal dimension emerges as a strong source of evidence for learning the temporal correlations across visual and textual modalities. So far, cross-media retrieval models, explored the correlations between different modalities (e.g. text and image) to learn a common subspace, in which semantically similar instances lie in the same neighbourhood. Building on such knowledge, we propose a novel temporal cross-media neural architecture, that departs from standard cross-media methods, by explicitly accounting for the temporal dimension through temporal subspace learning. The model is softly-constrained with temporal and inter-modality constraints that guide the new subspace learning task by favouring temporal correlations between semantically similar and temporally close instances. Experiments on three distinct datasets show that accounting for time turns out to be important for cross-media retrieval. Namely, the proposed method outperforms a set of baselines on the task of temporal cross-media retrieval, demonstrating its effectiveness for performing temporal subspace learning.Comment: To appear in ACM MM 201
    • …
    corecore