485 research outputs found

    Probing Product Description Generation via Posterior Distillation

    Full text link
    In product description generation (PDG), the user-cared aspect is critical for the recommendation system, which can not only improve user's experiences but also obtain more clicks. High-quality customer reviews can be considered as an ideal source to mine user-cared aspects. However, in reality, a large number of new products (known as long-tailed commodities) cannot gather sufficient amount of customer reviews, which brings a big challenge in the product description generation task. Existing works tend to generate the product description solely based on item information, i.e., product attributes or title words, which leads to tedious contents and cannot attract customers effectively. To tackle this problem, we propose an adaptive posterior network based on Transformer architecture that can utilize user-cared information from customer reviews. Specifically, we first extend the self-attentive Transformer encoder to encode product titles and attributes. Then, we apply an adaptive posterior distillation module to utilize useful review information, which integrates user-cared aspects to the generation process. Finally, we apply a Transformer-based decoding phase with copy mechanism to automatically generate the product description. Besides, we also collect a large-scare Chinese product description dataset to support our work and further research in this field. Experimental results show that our model is superior to traditional generative models in both automatic indicators and human evaluation

    InstructPTS: Instruction-Tuning LLMs for Product Title Summarization

    Full text link
    E-commerce product catalogs contain billions of items. Most products have lengthy titles, as sellers pack them with product attributes to improve retrieval, and highlight key product aspects. This results in a gap between such unnatural products titles, and how customers refer to them. It also limits how e-commerce stores can use these seller-provided titles for recommendation, QA, or review summarization. Inspired by recent work on instruction-tuned LLMs, we present InstructPTS, a controllable approach for the task of Product Title Summarization (PTS). Trained using a novel instruction fine-tuning strategy, our approach is able to summarize product titles according to various criteria (e.g. number of words in a summary, inclusion of specific phrases, etc.). Extensive evaluation on a real-world e-commerce catalog shows that compared to simple fine-tuning of LLMs, our proposed approach can generate more accurate product name summaries, with an improvement of over 14 and 8 BLEU and ROUGE points, respectively.Comment: Accepted by EMNLP 2023 (Industry Track

    M3PS: End-to-End Multi-Grained Multi-Modal Attribute-Aware Product Summarization in E-commerce

    Full text link
    Given the long textual product information and the product image, Multi-Modal Product Summarization (MMPS) aims to attract customers' interest and increase their desire to purchase by highlighting product characteristics with a short textual summary. Existing MMPS methods have achieved promising performance. Nevertheless, there still exist several problems: 1) lack end-to-end product summarization, 2) lack multi-grained multi-modal modeling, and 3) lack multi-modal attribute modeling. To address these issues, we propose an end-to-end multi-grained multi-modal attribute-aware product summarization method (M3PS) for generating high-quality product summaries in e-commerce. M3PS jointly models product attributes and generates product summaries. Meanwhile, we design several multi-grained multi-modal tasks to better guide the multi-modal learning of M3PS. Furthermore, we model product attributes based on both text and image modalities so that multi-modal product characteristics can be manifested in the generated summaries. Extensive experiments on a real large-scale Chinese e-commence dataset demonstrate that our model outperforms state-of-the-art product summarization methods w.r.t. several summarization metrics

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Multi-Modal Attention Network Learning for Semantic Source Code Retrieval

    Full text link
    Code retrieval techniques and tools have been playing a key role in facilitating software developers to retrieve existing code fragments from available open-source repositories given a user query. Despite the existing efforts in improving the effectiveness of code retrieval, there are still two main issues hindering them from being used to accurately retrieve satisfiable code fragments from large-scale repositories when answering complicated queries. First, the existing approaches only consider shallow features of source code such as method names and code tokens, but ignoring structured features such as abstract syntax trees (ASTs) and control-flow graphs (CFGs) of source code, which contains rich and well-defined semantics of source code. Second, although the deep learning-based approach performs well on the representation of source code, it lacks the explainability, making it hard to interpret the retrieval results and almost impossible to understand which features of source code contribute more to the final results. To tackle the two aforementioned issues, this paper proposes MMAN, a novel Multi-Modal Attention Network for semantic source code retrieval. A comprehensive multi-modal representation is developed for representing unstructured and structured features of source code, with one LSTM for the sequential tokens of code, a Tree-LSTM for the AST of code and a GGNN (Gated Graph Neural Network) for the CFG of code. Furthermore, a multi-modal attention fusion layer is applied to assign weights to different parts of each modality of source code and then integrate them into a single hybrid representation. Comprehensive experiments and analysis on a large-scale real-world dataset show that our proposed model can accurately retrieve code snippets and outperforms the state-of-the-art methods
    • …
    corecore