1,213 research outputs found

    An Efficient Medical Image Processing Approach Based on a Cognitive Marine Predators Algorithm

    Get PDF
    Image processing aims to enhance the image's quality such that it is simple for both people and robots to understand. Medical image processing and Biomedical signal processing have many conceptual similarities. Medical image processing involves evaluation, enhancement, and presentation. The focus of medical imaging is on obtaining photographs for both therapeutic and diagnostic reasons. In the existing Marine Predator Algorithm, different disadvantages are experienced when various automated optimization algorithms are used to the problem of ECG categorization. The proposed method follows the flow outlined here: data collection, image preprocessing using histogram equalization, segmentation using the Otsu threshold algorithm, feature extraction using the contour method, feature selection using the Neighborhood Component Analysis (NCA) algorithm, and Cognitive Marine Predator Algorithm (CMPA) as the proposed method. By using the Cognitive Marine Predators Algorithm (CMPA), base layers are fused to use the greatest feasible parameters, producing enhanced high-quality output images. Finally, the image processing performance is analyzed. The proposed approaches overcome the drawbacks of existing algorithms and increase the quality of medical images efficiently.&nbsp

    Scaling Up Medical Visualization : Multi-Modal, Multi-Patient, and Multi-Audience Approaches for Medical Data Exploration, Analysis and Communication

    Get PDF
    Medisinsk visualisering er en av de mest applikasjonsrettede områdene av visualiseringsforsking. Tett samarbeid med medisinske eksperter er nødvendig for å tolke medisinsk bildedata og lage betydningsfulle visualiseringsteknikker og visualiseringsapplikasjoner. Kreft er en av de vanligste dødsårsakene, og med økende gjennomsnittsalder i i-land øker også antallet diagnoser av gynekologisk kreft. Moderne avbildningsteknikker er et viktig verktøy for å vurdere svulster og produsere et økende antall bildedata som radiologer må tolke. I tillegg til antallet bildemodaliteter, øker også antallet pasienter, noe som fører til at visualiseringsløsninger må bli skalert opp for å adressere den økende kompleksiteten av multimodal- og multipasientdata. Dessuten er ikke medisinsk visualisering kun tiltenkt medisinsk personale, men har også som mål å informere pasienter, pårørende, og offentligheten om risikoen relatert til visse sykdommer, og mulige behandlinger. Derfor har vi identifisert behovet for å skalere opp medisinske visualiseringsløsninger for å kunne håndtere multipublikumdata. Denne avhandlingen adresserer skaleringen av disse dimensjonene i forskjellige bidrag vi har kommet med. Først presenterer vi teknikkene våre for å skalere visualiseringer i flere modaliteter. Vi introduserer en visualiseringsteknikk som tar i bruk små multipler for å vise data fra flere modaliteter innenfor et bildesnitt. Dette lar radiologer utforske dataen effektivt uten å måtte bruke flere sidestilte vinduer. I det neste steget utviklet vi en analyseplatform ved å ta i bruk «radiomic tumor profiling» på forskjellige bildemodaliteter for å analysere kohortdata og finne nye biomarkører fra bilder. Biomarkører fra bilder er indikatorer basert på bildedata som kan forutsi variabler relatert til kliniske utfall. «Radiomic tumor profiling» er en teknikk som genererer mulige biomarkører fra bilder basert på første- og andregrads statistiske målinger. Applikasjonen lar medisinske eksperter analysere multiparametrisk bildedata for å finne mulige korrelasjoner mellom kliniske parameter og data fra «radiomic tumor profiling». Denne tilnærmingen skalerer i to dimensjoner, multimodal og multipasient. I en senere versjon la vi til funksjonalitet for å skalere multipublikumdimensjonen ved å gjøre applikasjonen vår anvendelig for livmorhalskreft- og prostatakreftdata, i tillegg til livmorkreftdataen som applikasjonen var designet for. I et senere bidrag fokuserer vi på svulstdata på en annen skala og muliggjør analysen av svulstdeler ved å bruke multimodal bildedata i en tilnærming basert på hierarkisk gruppering. Applikasjonen vår finner mulige interessante regioner som kan informere fremtidige behandlingsavgjørelser. I et annet bidrag, en digital sonderingsinteraksjon, fokuserer vi på multipasientdata. Bildedata fra flere pasienter kan sammenlignes for å finne interessante mønster i svulstene som kan være knyttet til hvor aggressive svulstene er. Til slutt skalerer vi multipublikumdimensjonen med en likhetsvisualisering som er anvendelig for forskning på livmorkreft, på bilder av nevrologisk kreft, og maskinlæringsforskning på automatisk segmentering av svulstdata. Som en kontrast til de allerede fremhevete bidragene, fokuserer vårt siste bidrag, ScrollyVis, hovedsakelig på multipublikumkommunikasjon. Vi muliggjør skapelsen av dynamiske og vitenskapelige “scrollytelling”-opplevelser for spesifikke eller generelle publikum. Slike historien kan bli brukt i spesifikke brukstilfeller som kommunikasjon mellom lege og pasient, eller for å kommunisere vitenskapelige resultater via historier til et generelt publikum i en digital museumsutstilling. Våre foreslåtte applikasjoner og interaksjonsteknikker har blitt demonstrert i brukstilfeller og evaluert med domeneeksperter og fokusgrupper. Dette har ført til at noen av våre bidrag allerede er i bruk på andre forskingsinstitusjoner. Vi ønsker å evaluere innvirkningen deres på andre vitenskapelige felt og offentligheten i fremtidige arbeid.Medical visualization is one of the most application-oriented areas of visualization research. Close collaboration with medical experts is essential for interpreting medical imaging data and creating meaningful visualization techniques and visualization applications. Cancer is one of the most common causes of death, and with increasing average age in developed countries, gynecological malignancy case numbers are rising. Modern imaging techniques are an essential tool in assessing tumors and produce an increasing number of imaging data radiologists must interpret. Besides the number of imaging modalities, the number of patients is also rising, leading to visualization solutions that must be scaled up to address the rising complexity of multi-modal and multi-patient data. Furthermore, medical visualization is not only targeted toward medical professionals but also has the goal of informing patients, relatives, and the public about the risks of certain diseases and potential treatments. Therefore, we identify the need to scale medical visualization solutions to cope with multi-audience data. This thesis addresses the scaling of these dimensions in different contributions we made. First, we present our techniques to scale medical visualizations in multiple modalities. We introduced a visualization technique using small multiples to display the data of multiple modalities within one imaging slice. This allows radiologists to explore the data efficiently without having several juxtaposed windows. In the next step, we developed an analysis platform using radiomic tumor profiling on multiple imaging modalities to analyze cohort data and to find new imaging biomarkers. Imaging biomarkers are indicators based on imaging data that predict clinical outcome related variables. Radiomic tumor profiling is a technique that generates potential imaging biomarkers based on first and second-order statistical measurements. The application allows medical experts to analyze the multi-parametric imaging data to find potential correlations between clinical parameters and the radiomic tumor profiling data. This approach scales up in two dimensions, multi-modal and multi-patient. In a later version, we added features to scale the multi-audience dimension by making our application applicable to cervical and prostate cancer data and the endometrial cancer data the application was designed for. In a subsequent contribution, we focus on tumor data on another scale and enable the analysis of tumor sub-parts by using the multi-modal imaging data in a hierarchical clustering approach. Our application finds potentially interesting regions that could inform future treatment decisions. In another contribution, the digital probing interaction, we focus on multi-patient data. The imaging data of multiple patients can be compared to find interesting tumor patterns potentially linked to the aggressiveness of the tumors. Lastly, we scale the multi-audience dimension with our similarity visualization applicable to endometrial cancer research, neurological cancer imaging research, and machine learning research on the automatic segmentation of tumor data. In contrast to the previously highlighted contributions, our last contribution, ScrollyVis, focuses primarily on multi-audience communication. We enable the creation of dynamic scientific scrollytelling experiences for a specific or general audience. Such stories can be used for specific use cases such as patient-doctor communication or communicating scientific results via stories targeting the general audience in a digital museum exhibition. Our proposed applications and interaction techniques have been demonstrated in application use cases and evaluated with domain experts and focus groups. As a result, we brought some of our contributions to usage in practice at other research institutes. We want to evaluate their impact on other scientific fields and the general public in future work.Doktorgradsavhandlin

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System

    Robust Prototypical Few-Shot Organ Segmentation with Regularized Neural-ODEs

    Full text link
    Despite the tremendous progress made by deep learning models in image semantic segmentation, they typically require large annotated examples, and increasing attention is being diverted to problem settings like Few-Shot Learning (FSL) where only a small amount of annotation is needed for generalisation to novel classes. This is especially seen in medical domains where dense pixel-level annotations are expensive to obtain. In this paper, we propose Regularized Prototypical Neural Ordinary Differential Equation (R-PNODE), a method that leverages intrinsic properties of Neural-ODEs, assisted and enhanced by additional cluster and consistency losses to perform Few-Shot Segmentation (FSS) of organs. R-PNODE constrains support and query features from the same classes to lie closer in the representation space thereby improving the performance over the existing Convolutional Neural Network (CNN) based FSS methods. We further demonstrate that while many existing Deep CNN based methods tend to be extremely vulnerable to adversarial attacks, R-PNODE exhibits increased adversarial robustness for a wide array of these attacks. We experiment with three publicly available multi-organ segmentation datasets in both in-domain and cross-domain FSS settings to demonstrate the efficacy of our method. In addition, we perform experiments with seven commonly used adversarial attacks in various settings to demonstrate R-PNODE's robustness. R-PNODE outperforms the baselines for FSS by significant margins and also shows superior performance for a wide array of attacks varying in intensity and design

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology
    corecore