1,326 research outputs found

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Mengenal pasti masalah pemahaman dan hubungannya dengan latar belakang matematik, gaya pembelajaran, motivasi dan minat pelajar terhadap bab pengawalan kos makanan di Sekolah Menengah Teknik (ert) Rembau: satu kajian kes.

    Get PDF
    Kajian ini dijalankan untuk mengkaji hubungan korelasi antara latar belakang Matematik, gaya pembelajaran, motivasi dan minat dengan pemahaman pelajar terhadap bab tersebut. Responden adalah seramai 30 orang iaitu terdiri daripada pelajar tingkatan lima kursus Katering, Sekolah Menengah Teknik (ERT) Rembau, Negeri Sembilan. Instrumen kajian adalah soal selidik dan semua data dianalisis menggunakan program SPSS versi 10.0 untuk mendapatkan nilai min dan nilai korelasi bagi memenuhi objektif yang telah ditetapkan. Hasil kajian ini menunjukkan bahawa hubungan korelasi antara gaya pembelajaran pelajar terhadap pemahaman pelajar adalah kuat. Manakala hubungan korelasi antara latar belakang Matematik, motivasi dan minat terhadap pemahaman pelajar adalah sederhana. Nilai tahap min bagi masalah pemahaman pelajar, latar belakang Matematik, gaya pembelajaran, motivasi dan minat terhadap bab Pengawalan Kos Makanan adalah sederhana. Kajian ini mencadangkan penghasilan satu Modul Pembelajaran Kendiri bagi bab Pengawalan Kos Makanan untuk membantu pelajar kursus Katering dalam proses pembelajaran mereka

    Modeling and Performance Evaluation of MANET Handover

    Get PDF
    A Mobile Ad Hoc Network (MANET) is an unstructured collection of wireless nodes that move arbitrarily and use multi-hop protocols to communicate between each other. There is not a predefined infrastructure in a MANET as there is in other types of wireless networks. Now days, MANET networks integrate with other networks, like the Internet, permitting ad hoc nodes to communicate with hosts placed in any part of the world. But the integration of MANETs with fixed infrastructures must be carefully studied to evaluate how it performs. In such integrated scenario, commonly known as Hybrid Ad Hoc Network, a MANET can be seen as an extension to the existing infrastructure, whose mobile nodes seamlessly communicate with hosts on the fixed network by forwarding packets throughout the gateways found on the edge that join both types of network. Connecting MANETs to the Internet does not come without difficulties. Ad hoc routing protocols work different than the regular routing protocols used on the Internet, and their interoperability becomes an important issue. But when MANETs integrate with the Internet, a more demanding challenge emerges if node mobility is considered. A moving node may lose registration with its current gateway, and may then need to register to a different gateway (a handover) to continue communicating. During a handover, any ongoing communication will be interrupted affecting network performance. In order to improve this performance, an IP mobility management protocol must be used. The main objective of this research is to develop a model that may be used to evaluate the performance of MANET handovers under different scenarios. Different issues about MANET integration with the Internet are considered: the IP mobility protocol implemented, the external route computation procedure, the type of ad hoc routing protocol used, and the gateway discovery approach used. For this evaluation, a mobile node in a MANET holding a communication with a correspondent node in the Internet roams to a different sub-network, having to change its registration to a different gateway. The different scenarios considered to evaluate the handover performance include the use of different types of MANET protocols, the use of different gateway discovery approaches, and the use of different versions of the Mobile IP protocol. During the research a review was made of the functioning conditions for the proposed scenario. Then, a handover model was proposed, which was used to develop some metrics that were later used to evaluate the MANET handover performance. This metrics are the broken communication time, the probability of handover failure, and the average communication interruption time. In all the results found, we could confirm that the proactive discovery approach has a better handover performance than the reactive discovery approach, which permit us to conclude that regardless the MANET routing protocol, and the Mobile IP version, the proactive agent discovery approach should be used in highly mobile scenarios, preferable, with the reactive routing protocol

    Toward an efficient solution for dynamic ad hoc network interoperability

    Get PDF
    An ad hoc network is formed by an impromptu grouping of network capable nodes. The nodes forming the network have unconstrained mobility, and so provide a dynamic network topology. Current work in this research area has focused on designing routing protocols capable of efficiently forwarding packets in these dynamic network environments. This has led to several designs for ad hoc routing protocols based on various routing algorithms, each suited to specific usage characteristics. This paper will discuss issues relating to routing in ad hoc networks. We will describe an active networking based solution that provides dynamic routing protocol interoperability and enables migration of nodes between ad hoc groups. Our design is motivated by a squad and base scenario which consists of two groups wishing to communicate. These groups have contrasting deployment characteristics and so use different routing protocols

    Design of Simulator for Energy Efficient Clustering in Mobile Ad Hoc Networks

    Get PDF
    The research on various issues in Mobile ad hoc networks are getting popularity because of its challenging nature and all time connectivity to communicate. MANET (Mobile Ad-hoc Networks) is a random deployable network where devices are mobile with dynamic topology. In the network topology, each device is termed as a node and the virtual connectivity among each node is termed as the link .Nodes in a network are dynamically organized into virtual partitions called clusters. Network simulators provide the platform to analyse and imitate the working of computer networks along with the typical devices, traffic and other entities. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. Clustering is a proven solution to preserve the battery power of certain nodes. In the mechanism of clustering, there exists a cluster head in every cluster that works similar to a base station in the cellular architecture. Cluster heads being the communication hotspots tend to drain its battery power rapidly while serving its member nodes. Further, energy consumption is a key factor that hinders the deploy ability of a real ad hoc and sensor network. It is due to the limited life time of the battery powered devices that motivates intense research into energy efficient design of operating systems, protocols and hardware devices. The mobile ad hoc network can be modelled as a unidirectional graph G = (V, L) where V is the set of mobile nodes and L is the set of links that exist between the nodes. We assume that there exists a bidirectional link L between the nodes and when the distance between the nodes < (transmission range) of the nodes. In the dynamic network the cardinality of the nodes remains constant, but the cardinality of links changes due to the mobility of the nodes. Network simulators are used by researchers, developers and engineers to design various kinds of networks, simulate and then analyze the effect of various parameters on the network performance. A typical network simulator encompasses a wide range of networking technologies and can help the users to build complex networks from basic building blocks such as a variety of nodes and links. The objective of our work is to design a simulator for energy efficient clustering so that the data flow as well as the control flow could be easily handled and maintained. The proposed energy efficient clustering algorithm is a distributed algorithm that takes into account the consumed battery power of a node and its average transmission power for serving the neighbour nodes as the parameters to decide its suitability to act as a cluster head. These two parameters are added with different weight factors to find the weights of the individual nodes. After the clusters are formed, gateway nodes are selected in the network that help for the inter cluster communication. The graph for the number of cluster heads selected for different number of nodes are also drawn to study the functionality of the simulator

    TOPOLOGY CONTROL ALGORITHMS FOR RULE-BASED ROUTING

    Get PDF
    In this dissertation, we introduce a new topology control problem for rule- based link-state routing in autonomous networks. In this context, topology control is a mechanism to reduce the broadcast storm problem associated with link-state broadcasts. We focus on a class of topology control mechanisms called local-pruning mechanisms. Topology control by local pruning is an interesting multi-agent graph optimization problem, where every agent/router/station has access to only its local neighborhood information. Every agent selects a subset of its incident link-state in- formation for broadcast. This constitutes the pruned link-state information (pruned graph) for routing. The objective for every agent is to select a minimal subset of the local link-state information while guaranteeing that the pruned graph preserves desired paths for routing. In topology control for rule-based link-state routing, the pruned link-state information must preserve desired paths that satisfy the rules of routing. The non- triviality in these problems arises from the fact that the pruning agents have access to only their local link-state information. Consequently, rules of routing must have some property, which allows specifying the global properties of the routes from the local properties of the graph. In this dissertation, we illustrate that rules described as algebraic path problem in idempotent semirings have these necessary properties. The primary contribution of this dissertation is identifying a policy for pruning, which depends only on the local neighborhood, but guarantees that required global routing paths are preserved in the pruned graph. We show that for this local policy to ensure loop-free pruning, it is sufficient to have what is called an inflatory arc composition property. To prove the sufficiency, we prove a version of Bellman's optimality principle that extends to path-sets and minimal elements of partially ordered sets. As a motivating example, we present a stable path topology control mecha- nism, which ensures that the stable paths for routing are preserved after pruning. We show, using other examples, that the generic pruning works for many other rules of routing that are suitably described using idempotent semirings

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa
    corecore