1,644 research outputs found

    A machine learning-based investigation of cloud service attacks

    Get PDF
    In this thesis, the security challenges of cloud computing are investigated in the Infrastructure as a Service (IaaS) layer, as security is one of the major concerns related to Cloud services. As IaaS consists of different security terms, the research has been further narrowed down to focus on Network Layer Security. Review of existing research revealed that several types of attacks and threats can affect cloud security. Therefore, there is a need for intrusion defence implementations to protect cloud services. Intrusion Detection (ID) is one of the most effective solutions for reacting to cloud network attacks. [Continues.

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A new unified intrusion anomaly detection in identifying unseen web attacks

    Get PDF
    The global usage of more sophisticated web-based application systems is obviously growing very rapidly. Major usage includes the storing and transporting of sensitive data over the Internet. The growth has consequently opened up a serious need for more secured network and application security protection devices. Security experts normally equip their databases with a large number of signatures to help in the detection of known web-based threats. In reality, it is almost impossible to keep updating the database with the newly identified web vulnerabilities. As such, new attacks are invisible. This research presents a novel approach of Intrusion Detection System (IDS) in detecting unknown attacks on web servers using the Unified Intrusion Anomaly Detection (UIAD) approach. The unified approach consists of three components (preprocessing, statistical analysis, and classification). Initially, the process starts with the removal of irrelevant and redundant features using a novel hybrid feature selection method. Thereafter, the process continues with the application of a statistical approach to identifying traffic abnormality. We performed Relative Percentage Ratio (RPR) coupled with Euclidean Distance Analysis (EDA) and the Chebyshev Inequality Theorem (CIT) to calculate the normality score and generate a finest threshold. Finally, Logitboost (LB) is employed alongside Random Forest (RF) as a weak classifier, with the aim of minimising the final false alarm rate. The experiment has demonstrated that our approach has successfully identified unknown attacks with greater than a 95% detection rate and less than a 1% false alarm rate for both the DARPA 1999 and the ISCX 2012 datasets

    Applying Machine Learning to Advance Cyber Security: Network Based Intrusion Detection Systems

    Get PDF
    Many new devices, such as phones and tablets as well as traditional computer systems, rely on wireless connections to the Internet and are susceptible to attacks. Two important types of attacks are the use of malware and exploiting Internet protocol vulnerabilities in devices and network systems. These attacks form a threat on many levels and therefore any approach to dealing with these nefarious attacks will take several methods to counter. In this research, we utilize machine learning to detect and classify malware, visualize, detect and classify worms, as well as detect deauthentication attacks, a form of Denial of Service (DoS). This work also includes two prevention mechanisms for DoS attacks, namely a one- time password (OTP) and through the use of machine learning. Furthermore, we focus on an exploit of the widely used IEEE 802.11 protocol for wireless local area networks (WLANs). The work proposed here presents a threefold approach for intrusion detection to remedy the effects of malware and an Internet protocol exploit employing machine learning as a primary tool. We conclude with a comparison of dimensionality reduction methods to a deep learning classifier to demonstrate the effectiveness of these methods without compromising the accuracy of classification

    Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing

    Get PDF
    Widespread adoption of cloud computing has increased the attractiveness of such services to cybercriminals. Distributed denial of service (DDoS) attacks targeting the cloud’s bandwidth, services and resources to render the cloud unavailable to both cloud providers, and users are a common form of attacks. In recent times, feature selection has been identified as a pre-processing phase in cloud DDoS attack defence which can potentially increase classification accuracy and reduce computational complexity by identifying important features from the original dataset during supervised learning. In this work, we propose an ensemble-based multi-filter feature selection method that combines the output of four filter methods to achieve an optimum selection. We then perform an extensive experimental evaluation of our proposed method using intrusion detection benchmark dataset, NSL-KDD and decision tree classifier. The findings show that our proposed method can effectively reduce the number of features from 41 to 13 and has a high detection rate and classification accuracy when compared to other classification techniques

    Detecting Prominent Features and Classifying Network Traffic for Securing Internet of Things Based on Ensemble Methods

    Get PDF
    abstract: Rapid growth of internet and connected devices ranging from cloud systems to internet of things have raised critical concerns for securing these systems. In the recent past, security attacks on different kinds of devices have evolved in terms of complexity and diversity. One of the challenges is establishing secure communication in the network among various devices and systems. Despite being protected with authentication and encryption, the network still needs to be protected against cyber-attacks. For this, the network traffic has to be closely monitored and should detect anomalies and intrusions. Intrusion detection can be categorized as a network traffic classification problem in machine learning. Existing network traffic classification methods require a lot of training and data preprocessing, and this problem is more serious if the dataset size is huge. In addition, the machine learning and deep learning methods that have been used so far were trained on datasets that contain obsolete attacks. In this thesis, these problems are addressed by using ensemble methods applied on an up to date network attacks dataset. Ensemble methods use multiple learning algorithms to get better classification accuracy that could be obtained when the corresponding learning algorithm is applied alone. This dataset for network traffic classification has recent attack scenarios and contains over fifteen attacks. This approach shows that ensemble methods can be used to classify network traffic and detect intrusions with less training times of the model, and lesser pre-processing without feature selection. In addition, this thesis also shows that only with less than ten percent of the total features of input dataset will lead to similar accuracy that is achieved on whole dataset. This can heavily reduce the training times and classification duration in real-time scenarios.Dissertation/ThesisMasters Thesis Computer Science 201

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates
    • …
    corecore