2,303 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Arena3D: visualizing time-driven phenotypic differences in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes.</p> <p>Results</p> <p>Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene <it>lsm14a </it>in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.</p> <p>Conclusions</p> <p>We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: <url>http://arena3d.org/</url>.</p

    Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis

    Get PDF
    Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models

    BIOMIMETIC ORAL MUCIN FROM POLYMER MICELLE NETWORKS

    Get PDF
    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio-functional implant coats

    ProteoLens: a visual analytic tool for multi-scale database-driven biological network data mining

    Get PDF
    Background New systems biology studies require researchers to understand how interplay among myriads of biomolecular entities is orchestrated in order to achieve high-level cellular and physiological functions. Many software tools have been developed in the past decade to help researchers visually navigate large networks of biomolecular interactions with built-in template-based query capabilities. To further advance researchers' ability to interrogate global physiological states of cells through multi-scale visual network explorations, new visualization software tools still need to be developed to empower the analysis. A robust visual data analysis platform driven by database management systems to perform bi-directional data processing-to-visualizations with declarative querying capabilities is needed. Results We developed ProteoLens as a JAVA-based visual analytic software tool for creating, annotating and exploring multi-scale biological networks. It supports direct database connectivity to either Oracle or PostgreSQL database tables/views, on which SQL statements using both Data Definition Languages (DDL) and Data Manipulation languages (DML) may be specified. The robust query languages embedded directly within the visualization software help users to bring their network data into a visualization context for annotation and exploration. ProteoLens supports graph/network represented data in standard Graph Modeling Language (GML) formats, and this enables interoperation with a wide range of other visual layout tools. The architectural design of ProteoLens enables the de-coupling of complex network data visualization tasks into two distinct phases: 1) creating network data association rules, which are mapping rules between network node IDs or edge IDs and data attributes such as functional annotations, expression levels, scores, synonyms, descriptions etc; 2) applying network data association rules to build the network and perform the visual annotation of graph nodes and edges according to associated data values. We demonstrated the advantages of these new capabilities through three biological network visualization case studies: human disease association network, drug-target interaction network and protein-peptide mapping network. Conclusion The architectural design of ProteoLens makes it suitable for bioinformatics expert data analysts who are experienced with relational database management to perform large-scale integrated network visual explorations. ProteoLens is a promising visual analytic platform that will facilitate knowledge discoveries in future network and systems biology studies

    Diffusion Model Based Spectral Clustering for Protein-Protein Interaction Networks

    Get PDF
    BACKGROUND: A goal of systems biology is to analyze large-scale molecular networks including gene expressions and protein-protein interactions, revealing the relationships between network structures and their biological functions. Dividing a protein-protein interaction (PPI) network into naturally grouped parts is an essential way to investigate the relationship between topology of networks and their functions. However, clear modular decomposition is often hard due to the heterogeneous or scale-free properties of PPI networks. METHODOLOGY/PRINCIPAL FINDINGS: To address this problem, we propose a diffusion model-based spectral clustering algorithm, which analytically solves the cluster structure of PPI networks as a problem of random walks in the diffusion process in them. To cope with the heterogeneity of the networks, the power factor is introduced to adjust the diffusion matrix by weighting the transition (adjacency) matrix according to a node degree matrix. This algorithm is named adjustable diffusion matrix-based spectral clustering (ADMSC). To demonstrate the feasibility of ADMSC, we apply it to decomposition of a yeast PPI network, identifying biologically significant clusters with approximately equal size. Compared with other established algorithms, ADMSC facilitates clear and fast decomposition of PPI networks. CONCLUSIONS/SIGNIFICANCE: ADMSC is proposed by introducing the power factor that adjusts the diffusion matrix to the heterogeneity of the PPI networks. ADMSC effectively partitions PPI networks into biologically significant clusters with almost equal sizes, while being very fast, robust and appealing simple

    Visualization of modular structures in biological networks

    Get PDF
    corecore