94,083 research outputs found

    Weakly Labelled AudioSet Tagging with Attention Neural Networks

    Full text link
    Audio tagging is the task of predicting the presence or absence of sound classes within an audio clip. Previous work in audio tagging focused on relatively small datasets limited to recognising a small number of sound classes. We investigate audio tagging on AudioSet, which is a dataset consisting of over 2 million audio clips and 527 classes. AudioSet is weakly labelled, in that only the presence or absence of sound classes is known for each clip, while the onset and offset times are unknown. To address the weakly-labelled audio tagging problem, we propose attention neural networks as a way to attend the most salient parts of an audio clip. We bridge the connection between attention neural networks and multiple instance learning (MIL) methods, and propose decision-level and feature-level attention neural networks for audio tagging. We investigate attention neural networks modeled by different functions, depths and widths. Experiments on AudioSet show that the feature-level attention neural network achieves a state-of-the-art mean average precision (mAP) of 0.369, outperforming the best multiple instance learning (MIL) method of 0.317 and Google's deep neural network baseline of 0.314. In addition, we discover that the audio tagging performance on AudioSet embedding features has a weak correlation with the number of training samples and the quality of labels of each sound class.Comment: 13 page

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) → R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members — that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ≥ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph

    Multi-scale Deep Learning Architectures for Person Re-identification

    Full text link
    Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their appearance are often subtle and only detectable at the right location and scales. Existing re-id models, particularly the recently proposed deep learning based ones match people at a single scale. In contrast, in this paper, a novel multi-scale deep learning model is proposed. Our model is able to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for matching. The importance of different spatial locations for extracting discriminative features is also learned explicitly. Experiments are carried out to demonstrate that the proposed model outperforms the state-of-the art on a number of benchmarksComment: 9 pages, 3 figures, accepted by ICCV 201
    • …
    corecore