152,836 research outputs found

    Interactive Causal Correlation Space Reshape for Multi-Label Classification

    Get PDF
    Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to constraint solution space, and then mine the latent semantic information of the label space. However, the label correlation matrix is usually directly added to the model, which ignores the interactive causality of the correlation between the labels. Considering the label-specific features based on the distance method merely may have the problem of distance measurement failure in the high-dimensional space, while based on the sparse weight matrix method may cause the problem that parameter is dependent on manual selection. Eventually, this leads to poor classifier performance. In addition, it is considered that logical labels cannot describe the importance of different labels and cannot fully express semantic information. Based on these, we propose an Interactive Causal Correlation Space Reshape for Multi-Label Classification (CCSRMC) algorithm. Firstly, the algorithm constructs the label propagation matrix using characteristic that similar instances can be linearly represented by each other. Secondly, label co-occurrence matrix is constructed by combining the conditional probability test method, which is based on the label propagation reshaping the label space to rich label semantics. Then the label co-occurrence matrix combines with the label correlation matrix to construct the label interactive causal correlation matrix to perform multi-label classification learning on the obtained numerical label matrix. Finally, the algorithm in this paper is compared with multiple advanced algorithms on multiple benchmark multi-label datasets. The results show that considering the interactive causal label correlation can reduce the redundant information in the model and improve the performance of the multi-label classifier

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes
    corecore