667 research outputs found

    Burst Denoising with Kernel Prediction Networks

    Full text link
    We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.Comment: To appear in CVPR 2018 (spotlight). Project page: http://people.eecs.berkeley.edu/~bmild/kpn

    Efficient Burst Raw Denoising with Variance Stabilization and Multi-frequency Denoising Network

    Full text link
    With the growing popularity of smartphones, capturing high-quality images is of vital importance to smartphones. The cameras of smartphones have small apertures and small sensor cells, which lead to the noisy images in low light environment. Denoising based on a burst of multiple frames generally outperforms single frame denoising but with the larger compututional cost. In this paper, we propose an efficient yet effective burst denoising system. We adopt a three-stage design: noise prior integration, multi-frame alignment and multi-frame denoising. First, we integrate noise prior by pre-processing raw signals into a variance-stabilization space, which allows using a small-scale network to achieve competitive performance. Second, we observe that it is essential to adopt an explicit alignment for burst denoising, but it is not necessary to integrate a learning-based method to perform multi-frame alignment. Instead, we resort to a conventional and efficient alignment method and combine it with our multi-frame denoising network. At last, we propose a denoising strategy that processes multiple frames sequentially. Sequential denoising avoids filtering a large number of frames by decomposing multiple frames denoising into several efficient sub-network denoising. As for each sub-network, we propose an efficient multi-frequency denoising network to remove noise of different frequencies. Our three-stage design is efficient and shows strong performance on burst denoising. Experiments on synthetic and real raw datasets demonstrate that our method outperforms state-of-the-art methods, with less computational cost. Furthermore, the low complexity and high-quality performance make deployment on smartphones possible.Comment: Accepted for publication in International Journal of Computer Visio

    Gated Multi-Resolution Transfer Network for Burst Restoration and Enhancement

    Full text link
    Burst image processing is becoming increasingly popular in recent years. However, it is a challenging task since individual burst images undergo multiple degradations and often have mutual misalignments resulting in ghosting and zipper artifacts. Existing burst restoration methods usually do not consider the mutual correlation and non-local contextual information among burst frames, which tends to limit these approaches in challenging cases. Another key challenge lies in the robust up-sampling of burst frames. The existing up-sampling methods cannot effectively utilize the advantages of single-stage and progressive up-sampling strategies with conventional and/or recent up-samplers at the same time. To address these challenges, we propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images. GMTNet consists of three modules optimized for burst processing tasks: Multi-scale Burst Feature Alignment (MBFA) for feature denoising and alignment, Transposed-Attention Feature Merging (TAFM) for multi-frame feature aggregation, and Resolution Transfer Feature Up-sampler (RTFU) to up-scale merged features and construct a high-quality output image. Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.Comment: Accepted at CVPR 202
    • …
    corecore