24 research outputs found

    A random access MAC protocol for MPR satellite networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaRandom access approaches for Low Earth Orbit (LEO) satellite networks are usually incompatible with the Quality of Service (QoS) requirements of multimedia tra c, especially when hand-held devices must operate with very low power. Cross-Layered optimization architectures, combined with Multipacket Reception (MPR)schemes are a good choice to enhance the overall performance of a wireless system. Hybrid Network-assisted Diversity Multiple Access (H-NDMA) protocol, exhibits high energy e ciency, with MPR capability, but its use with satellites is limited by the high round trip time. This protocol was adapted to satellites, in Satellite-NDMA, but it required a pre-reservation mechanism that introduces a signi cant delay. This dissertation proposes a random access protocol that uses H-NDMA, for Low Earth Orbit (LEO) satellite networks, named Satellite Random-NDMA (SR-NDMA). The protocol addresses the problem inherent to satellite networks (large round trip time and signi cant energy consumption) de ning a hybrid approach with an initial random access plus possible additional scheduled retransmissions. An MPR receiver combines the multiple copies received, gradually reducing the error rate. Analytical performance models are proposed for the throughput, delay, jitter and energy e ciency considering nite queues at the terminals. It is also addressed the energy e ciency optimization, where the system parameters are calculated to guarantee the QoS requirements. The proposed system's performance is evaluated for a Single-Carrier with Frequency Domain Equalization (SC-FDE) receiver. Results show that the proposed system is energy e cient and can provide enough QoS to support services such as video telephony

    A study of topologies and protocols for fiber optic local area network

    Get PDF
    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways

    Protocol for Extreme Low Latency M2M Communication Networks

    Get PDF
    As technology evolves, more Machine to Machine (M2M) deployments and mission critical services are expected to grow massively, generating new and diverse forms of data traffic, posing unprecedented challenges in requirements such as delay, reliability, energy consumption and scalability. This new paradigm vindicates a new set of stringent requirements that the current mobile networks do not support. A new generation of mobile networks is needed to attend to this innovative services and requirements - the The fifth generation of mobile networks (5G) networks. Specifically, achieving ultra-reliable low latency communication for machine to machine networks represents a major challenge, that requires a new approach to the design of the Physical (PHY) and Medium Access Control (MAC) layer to provide these novel services and handle the new heterogeneous environment in 5G. The current LTE Advanced (LTE-A) radio access network orthogonality and synchronization requirements are obstacles for this new 5G architecture, since devices in M2M generate bursty and sporadic traffic, and therefore should not be obliged to follow the synchronization of the LTE-A PHY layer. A non-orthogonal access scheme is required, that enables asynchronous access and that does not degrade the spectrum. This dissertation addresses the requirements of URLLC M2M traffic at the MAC layer. It proposes an extension of the M2M H-NDMA protocol for a multi base station scenario and a power control scheme to adapt the protocol to the requirements of URLLC. The system and power control schemes performance and the introduction of more base stations are analyzed in a system level simulator developed in MATLAB, which implements the MAC protocol and applies the power control algorithm. Results showed that with the increase in the number of base stations, delay can be significantly reduced and the protocol supports more devices without compromising delay or reliability bounds for Ultra-Reliable and Low Latency Communication (URLLC), while also increasing the throughput. The extension of the protocol will enable the study of different power control algorithms for more complex scenarios and access schemes that combine asynchronous and synchronous access

    Enabling Millimeter Wave Communication for 5G Cellular Networks: MAC-layer Perspective

    Get PDF
    Data traffic among mobile devices increases dramatically with emerging high-speed multimedia applications such as uncompressed video streaming. Many new applications beyond personal communications involve tens or even hundreds of billions wireless devices, such as wireless watch, e-health sensors, and wireless glass. The number of wireless devices and the data rates will continue to grow exponentially. Quantitative evidences forecast that total data rate by 2020 will be 1000 times of current 4G data rate. Next generation wireless networks need fundamental changes to satisfy the overwhelming capacity demands. Millimeter wave (mmWave) communication with huge available bandwidth is a very promising solution for next generation wireless networks to overcome the global bandwidth shortage at saturated microwave spectrum. The large available bandwidth can be directly translated into high capacity. mmWave communication has several propagation characteristics including strong pathloss, atmospheric and rain absorption, low diffraction around obstacles and penetration through objects. These propagation characteristics create challenges for next generation wireless networks to support various kinds of emerging applications with different QoS requirements. Our research focuses on how to effectively and efficiently exploit the large available mmWave bandwidth to achieve high capacity demand while overcoming these challenges on QoS provisioning for various kinds of applications. This thesis focuses on MAC protocol design and analysis for mmWave communication to provide required capacity and QoS to support various kinds of applications in next generation wireless networks. Specifically, from the transmitter/receiver perspective, multi-user beamforming based on codebook is conducted to determine best transmission/reception beams to increase network capacity considering the mutual interferences among concurrent links. From the channel perspective, both interfering and non-interfering concurrent links are scheduled to operate simultaneously to exploit spatial reuse and improve network capacity. Link outage problem resulting from the limited diffraction capability and low penetration capability of mmWave band is addressed for quality provisioning by enabling multi-hop transmission to replace the link in outage (for low-mobility scenarios) and buffer design with dynamic bandwidth allocation among all the users in the whole coverage area (for high-mobility scenarios). From the system perspective, system structure, network architecture, and candidate MAC are investigated and novel backoff mechanism for CSMA/CA is proposed to give more transmission opportunity to faraway nodes than nearby nodes in order to achieve better fairness and higher network capacity. In this thesis, we formulate each problem mentioned above as an optimization problem with the proposed algorithms to solve it. Extensive analytical and simulation results are provided to demonstrate the performance of the proposed algorithms in several aspects, such as network capacity, energy efficiency, link connectivity and so on

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    CROSS-LAYER ASPECTS OF COGNITIVE WIRELESS NETWORKS

    Get PDF
    We study cognitive wireless networks from a cross-layer perspective, where we investigate the effects of the PHY layer parameters and enhancements on the MAC layer performance. We quantify the benefit of using sophisticated techniques such as cooperative communications and network coding in cognitive networks. The first part deals with unicast scenarios. We first study the problem of random access over time varying channels with cognitive nodes adjusting their access probabilities according to the decentralized channel state information they acquire at the PHY layer. We derive the conditions for our random access scheme to outperform orthogonal access. We then study the case where a set of secondary users (SUs) opportunistically accesses the primary user's (PU) spectrum whenever it is idle. Since sensing errors are unavoidable, we study the effect of the interference from the SUs on the stable throughput of the PU. We then compute the range of the SUs' transmission parameters that guarantees the stability of the PU queue. In order to balance the negative effects of the interference from the SUs, we propose a PHY layer relaying protocol between the PU and SU networks that is based on distributed orthogonal space-time block codes. Under this protocol, it is shown that the PU's throughput gain from relaying increases with the number of SUs. Moreover, the SUs might benefit from relaying the PU's packets as well. Next, we propose and analyze access schemes at the SUs aiming at exploiting the SU's knowledge of the statistics of various channels and of the average arrival rate to the PU. The motivation is that although the traditional opportunistic spectrum access (OSA) guarantees full protection to the PUs, it is sometimes too conservative if the interference caused by the SUs at the PU receiver is negligible. We derive the conditions under which schemes without sensing outperform schemes with sensing since they offer to the SU more data transmission duration. The second part of the dissertation deals with cognitive multicasting networks. First, we study relay assisted multicasting. The relay delivers the unsuccessful packets of the source during the idle slots of the source which are determined by sensing. This avoids allocating any explicit resources to the relay. We then substantiate the benefit of using network coding (NC) at the relay. Finally, we study the problem of reliable spectrum sensing and opportunistic access on channels with stochastic traffic in batch processing systems such as NC. We show how an SU can leverage the structure induced by block-based NC on PUs' channels to mitigate the effects of channel sensing errors and improve the throughput. We consider two different objectives at the SU: quickest detection of an idle slot and throughput maximization. We validate our results with real radio measurements taken in software-defined radio based wireless network tests

    Serviços pós-4G em redes de satélite LEO com recepção multi-pacote e com handover

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresUm pacote com erros, quer seja devido à existência de colisões ou ruído no canal, é normalmente descartado e necessita de ser retransmitido, levando a perdas de desempenho. A junção do protocolo H-ARQ (Hybrid Automatic Retransmission reQuest) com técnicas de recepção multi-pacote e com diversidade temporal como o NDMA (Network Diversity Multiple Access), melhoram o desempenho, visto terem a capacidade de pedir transmissões extra e combinar todos os sinais recebidos no mesmo período. Contudo, o atraso provocado pelo tempo de ida e volta na comunicação com uma rede de satélites, limita o número de retransmissões que possam ser pedidas pelos terminais para garantir qualidade de serviço. Esta tese considera o desenho de um protocolo híbrido que combina H-ARQ com NDMA para redes satélites com tráfego atribuído a pedido. O protocolo S-NDMA (Satellite NDMA) é apresentado, juntamente com modelos analíticos para o seu desempenho. É analisada a sua eficiência energética, tendo em conta requisitos de qualidade de serviço (QoS). O sistema é feito para satélites de órbita baixa (LEO) e com SC-FDE (Single-Carrier with Frequency Domain Equalization). É feita também uma comparação de desempenhos deste esquema com H-NDMA (Hybrid-NDMA), mostrando que é eficiente em termos energéticos e que cumpre requisitos de QoS para serviços exigentes como videochamadas. São necessários vários satélites para cobrir uma vasta área do planeta. Como os satélites estão em constante movimento, a zona de cobertura associada a cada satélite também se desloca. Isto leva a uma necessidade do terminal móvel trocar constantemente de ligação para um novo satélite. Nesta dissertação são propostos dois esquemas para S-NDMA: o tradicional com interrupção temporária de ligação, e um novo com continuidade de ligação baseado em SIMO distribuído. São estudadas a viabilidade e desempenho dos dois esquemas, analisando-se a eficiência energética, o efeito de Doppler, o ponto óptimo de troca e o atraso no tempo na comunicação entre terminais móveis e satélites
    corecore