706 research outputs found

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF

    Towards a Mini-App for Smoothed Particle Hydrodynamics at Exascale

    Full text link
    The smoothed particle hydrodynamics (SPH) technique is a purely Lagrangian method, used in numerical simulations of fluids in astrophysics and computational fluid dynamics, among many other fields. SPH simulations with detailed physics represent computationally-demanding calculations. The parallelization of SPH codes is not trivial due to the absence of a structured grid. Additionally, the performance of the SPH codes can be, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. This work presents insights into the current performance and functionalities of three SPH codes: SPHYNX, ChaNGa, and SPH-flow. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. To gain such insights, a rotating square patch test was implemented as a common test simulation for the three SPH codes and analyzed on two modern HPC systems. Furthermore, to stress the differences with the codes stemming from the astrophysics community (SPHYNX and ChaNGa), an additional test case, the Evrard collapse, has also been carried out. This work extrapolates the common basic SPH features in the three codes for the purpose of consolidating them into a pure-SPH, Exascale-ready, optimized, mini-app. Moreover, the outcome of this serves as direct feedback to the parent codes, to improve their performance and overall scalability.Comment: 18 pages, 4 figures, 5 tables, 2018 IEEE International Conference on Cluster Computing proceedings for WRAp1

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    Acceleration of GATE Monte Carlo simulations

    Get PDF
    Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography are forms of medical imaging that produce functional images that reflect biological processes. They are based on the tracer principle. A biologically active substance, a pharmaceutical, is selected so that its spatial and temporal distribution in the body reflects a certain body function or metabolism. In order to form images of the distribution, the pharmaceutical is labeled with gamma-ray-emitting or positron-emitting radionuclides (radiopharmaceuticals or tracers). After administration of the tracer to a patient, an external position-sensitive gamma-ray camera can detect the emitted radiation to form a stack of images of the radionuclide distribution after a reconstruction process. Monte Carlo methods are numerical methods that use random numbers to compute quantities of interest. This is normally done by creating a random variable whose expected value is the desired quantity. One then simulates and tabulates the random variable and uses its sample mean and variance to construct probabilistic estimates. It represents an attempt to model nature through direct simulation of the essential dynamics of the system in question. Monte Carlo modeling is the method of choice for all applications where measurements are not feasible or where analytic models are not available due to the complex nature of the problem. In addition, such modeling is a practical approach in nuclear medical imaging in several important application fields: detector design, quantification, correction methods for image degradations, detection tasks etc. Several powerful dedicated Monte Carlo simulators for PET and/or SPECT are available. However, they are often not detailed nor flexible enough to enable realistic simulations of emission tomography detector geometries while also modeling time dependent processes such as decay, tracer kinetics, patient and bed motion, dead time or detector orbits. Our Monte Carlo simulator of choice, GEANT4 Application for Tomographic Emission (GATE), was specifically designed to address all these issues. The flexibility of GATE comes at a price however. The simulation of a simple prototype SPECT detector may be feasible within hours in GATE but an acquisition with a realistic phantom may take years to complete on a single CPU. In this dissertation we therefore focus on the Achilles’ heel of GATE: efficiency. Acceleration of GATE simulations can only be achieved through a combination of efficient data analysis, dedicated variance reduction techniques, fast navigation algorithms and parallelization. In the first part of this dissertation we consider the improvement of the analysis capabilities of GATE. The static analysis module in GATE is both inflexible and incapable of storing more detail without introducing a large computational overhead. However, the design and validation of the acceleration techniques in this dissertation requires a flexible, detailed and computationally efficient analysis module. To this end, we develop a new analysis framework capable of analyzing any process, from the decay of isotopes to particle interactions and detections in any detector element for any type of phantom. The evaluation of our framework consists of the assessment of spurious activity in 124I-Bexxar PET and of contamination in 131I-Bexxar SPECT. In the case of PET we describe how our framework can detect spurious coincidences generated by non-pure isotopes, even with realistic phantoms. We show that optimized energy thresholds, which can readily be applied in the clinic, can now be derived in order to minimize the contamination. We also show that the spurious activity itself is not spatially uniform. Therefore standard reconstruction and correction techniques are not adequate. In the case of SPECT we describe how it is now possible to classify detections into geometric detections, phantom scatter, penetration through the collimator, collimator scatter and backscatter in the end parts. We show that standard correction algorithms such as triple energy window correction cannot correct for septal penetration. We demonstrate that 124I PET with optimized energy thresholds offer better image quality than 131I SPECT when using standard reconstruction techniques. In the second part of this dissertation we focus on improving the efficiency of GATE with a variance reduction technique called Geometrical Importance Sampling (GIS). We describe how only 0.02% of all emitted photons can reach the crystal surface of a SPECT detector head with a low energy high resolution collimator. A lot of computing power is therefore wasted by tracking photons that will not contribute to the result. A twofold strategy is used to solve this problem: GIS employs Russian Roulette to discard those photons that will not likely contribute to the result. Photons in more important regions on the other hand are split into several photons with reduced weight to increase their survival chance. We show that this technique introduces branches into the particle history. We describe how this can be taken into account by a particle history tree that is used for the analysis of the results. The evaluation of GIS consists of energy spectra validation, spatial resolution and sensitivity for low and medium energy isotopes. We show that GIS reaches acceleration factors between 5 and 13 over analog GATE simulations for the isotopes in the study. It is a general acceleration technique that can be used for any isotope, phantom and detector combination. Although GIS is useful as a safe and accurate acceleration technique, it cannot deliver clinically acceptable simulation times. The main reason lies in its inability to force photons in a specific direction. In the third part of this dissertation we solve this problem for 99mTc SPECT simulations. Our approach is twofold. Firstly, we introduce two variance reduction techniques: forced detection (FD) and convolution-based forced detection (CFD) with multiple projection sampling (MPS). FD and CFD force copies of photons at decay and at every interaction point to be transported through the phantom in a direction sampled within a solid angle toward the SPECT detector head at all SPECT angles simultaneously. We describe how a weight must be assigned to each photon in order to compensate for the forced direction and non-absorption at emission and scatter. We show how the weights are calculated from the total and differential Compton and Rayleigh cross sections per electron with incorporation of Hubbell’s atomic form factor. In the case of FD all detector interactions are modeled by Monte Carlo, while in the case of CFD the detector is modeled analytically. Secondly, we describe the design of an FD and CFD specialized navigator to accelerate the slow tracking algorithms in GEANT4. The validation study shows that both FD and CFD closely match the analog GATE simulations and that we can obtain an acceleration factor between 3 (FD) and 6 (CFD) orders of magnitude over analog simulations. This allows for the simulation of a realistic acquisition with a torso phantom within 130 seconds. In the fourth part of this dissertation we exploit the intrinsic parallel nature of Monte Carlo simulations. We show how Monte Carlo simulations should scale linearly as a function of the number of processing nodes but that this is usually not achieved due to job setup time, output handling and cluster overhead. We describe how our approach is based on two steps: job distribution and output data handling. The job distribution is based on a time-domain partitioning scheme that retains all experimental parameters and that guarantees the statistical independence of each subsimulation. We also reduce the job setup time by the introduction of a parameterized collimator model for SPECT simulations. We reduce the data output handling time by a chain-based output merger. The scalability study is based on a set of simulations on a 70 CPU cluster and shows an acceleration factor of approximately 66 on 70 CPUs for both PET and SPECT.We also show that our method of parallelization does not introduce any approximations and that it can be readily combined with any of the previous acceleration techniques described above

    Wall Distance Evaluation Via Eikonal Solver for RANS Applications

    Get PDF
    RÉSUMÉ Les logiciels de mécanique des fluides assistée par ordinateur (CFD) sont de plus en plus utilisés pour la conception d’aéronefs. L’utilisation de grappes informatiques haute performance permet d’augmenter la puissance de calcul, aux prix de modifier la structure du code. Dans les codes CFD, les équations de Navier-Stokes moyennées (plus connues sous le nom des équations RANS) sont souvent résolues. Par conséquent, les modèles de turbulence sont utilisés pour approximer les effets de la turbulence. Dans l’industrie aéronautique, le modèle Spalart-Allmaras est bien accepté. La distance à la paroi dans ce modèle, par exemple, joue un rôle clé dans l’évaluation des forces aérodynamiques. L’évaluation de ce paramètre géométrique doit alors être précis et son calcul efficace. Avec les nouveaux développement des hardwares, un besoin se crée dans la communauté afin d’adapter les codes CFD à ceux-ci. Les algorithmes de recherche comme les distances euclidienne et projetée sont des méthodes souvent utilisées pour le calcul de la distance à la paroi et ont tendance à présenter une mauvaise scalabilité. Pour cette raison, un nouveau solveur pour la distance à la paroi doit être développé. Pour utiliser les solveurs et techniques d’accélération déjà existantes au sein du code CFD, l’équation Eikonal, une équation aux différentielles partielles non-linéaires, a été choisie. Dans la première partie du projet, le solveur d’équation Eikonal est développé en 2D et est résolue dans sa forme advective au centre de cellule. Les méthodes des différences finies et des volumes finis sont testées. L’équation est résolue à l’aide d’une discrétisation spatiale de premier ordre en amont. Les solveurs ont été vérifiés sur des cas canoniques, tels une plaque plane et un cylindre. Les deux méthodes de discrétisation réussissent à corriger les effets de maillages obliques et courbes. La méthode des différences finies possède un taux de convergence en maillage de deuxième ordre tandis que la méthode des volumes finis a un taux de convergence de premier ordre. L’addition d’une reconstruction linéaire de la solution à la face permet d’étendre la méthode des volumes finis à une méthode de deuxième ordre. De plus, les méthodes de différence finie et de volume fini de deuxième ordre permettent de bien représenter la distance à la paroi dans les zones de fort élargissement des cellules. L’équation Eikonal est ensuite vérifié sur plusieurs cas dont un profil NACA0012 en utilisant trois modèles de turbulence : Spalart-Allmaras, Menter SST et Mener-Langtry SST transitionnel.----------ABSTRACT Computational fluid dynamics (CFD) software is being used more often nowadays in aircraft design. The use of high performance computing clusters can increase computing power, but requires change in the structure of the software. In the aeronautical industry, CFD codes are often used to solve the Reynolds-Averaged Navier-Stokes (RANS) equations, and turbulence models are frequently used to approximate turbulent effects on flow. The Spalart-Allmaras turbulence model is widely accepted in the industry. In this model, wall distance plays a key role in the evaluation of aerodynamic forces. Therefore calculation of this geometric parameter needs to be accurate and efficient. With new developments in computing hardware, there is a need to adapt CFD codes. Search algorithms such as Euclidean and projected distance are often the methods used for computation of wall distance but tend to exhibit poor scalability. For this reason, a new wall distance solver is developed here using the Eikonal equation, a non-linear partial differential equation, chosen to make use of existing solvers and acceleration techniques in RANS solvers. In the first part of the project, the Eikonal equation solver was developed in 2D and solved in its advective form at the cell center. Both finite difference and finite volume methods were tested. The Eikonal equation was also solved using a first-order upwind spatial discretization. The solvers were verified through canonical cases like a flat plate and a cylinder. Both methods were able to correct the effects of skewed and curved meshes. The finite difference method converged at a second-order rate in space while the finite volume method converged at a first-order rate. The addition of a linear reconstruction of the solution at the face extended the finite volume method to a second-order method. Moreover, both finite difference and second-order finite volume methods were well represented by wall distance in zones of strong cell growth. The finite difference method was chosen, as it required less computing time. The Eikonal equation was then verified for several cases including a NACA0012 using three turbulence models: Spalart-Allmaras, Menter’s SST and Menter-Langtry transitional SST. For the first model, the Eikonal equation was able to correct grid skewness on the turbulent viscosity as well as on the aerodynamic coefficients, while for the other two yielded results similar to Euclidean and projected distance. To verify the implementation and convergence of the multi-grid scheme, the new wall distance solver was tested on an ice-accreted airfoil. In addition, the overset grid capabilities of the wall distance solver were verified on the McDonnell Douglas airfoil. Finally, the DLR-F6, a 3D case, was solved to show that the Eikonal equation can be extended to 3D meshes
    • …
    corecore