277 research outputs found

    Large-N reduction for N=2 quiver Chern-Simons theories on S^3 and localization in matrix models

    Full text link
    We study reduced matrix models obtained by the dimensional reduction of N=2 quiver Chern-Simons theories on S^3 to zero dimension and show that if a reduced model is expanded around a particular multiple fuzzy sphere background, it becomes equivalent to the original theory on S^3 in the large-N limit. This is regarded as a novel large-N reduction on a curved space S^3. We perform the localization method to the reduced model and compute the free energy and the vacuum expectation value of a BPS Wilson loop operator. In the large-N limit, we find an exact agreement between these results and those in the original theory on S^3.Comment: 46 pages, 11 figures; minor modification

    Gauge Theory on Fuzzy S^2 x S^2 and Regularization on Noncommutative R^4

    Full text link
    We define U(n) gauge theory on fuzzy S^2_N x S^2_N as a multi-matrix model, which reduces to ordinary Yang-Mills theory on S^2 x S^2 in the commutative limit N -> infinity. The model can be used as a regularization of gauge theory on noncommutative R^4_\theta in a particular scaling limit, which is studied in detail. We also find topologically non-trivial U(1) solutions, which reduce to the known "fluxon" solutions in the limit of R^4_\theta, reproducing their full moduli space. Other solutions which can be interpreted as 2-dimensional branes are also found. The quantization of the model is defined non-perturbatively in terms of a path integral which is finite. A gauge-fixed BRST-invariant action is given as well. Fermions in the fundamental representation of the gauge group are included using a formulation based on SO(6), by defining a fuzzy Dirac operator which reduces to the standard Dirac operator on S^2 x S^2 in the commutative limit. The chirality operator and Weyl spinors are also introduced.Comment: 39 pages. V2-4: References added, typos fixe

    Hypermatrix factors for string and membrane junctions

    Full text link
    The adjoint representations of the Lie algebras of the classical groups SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric products of two vector spaces, and hence are matrix representations. We consider the analogous products of three vector spaces and study when they appear as summands in Lie algebra decompositions. The Z3-grading of the exceptional Lie algebras provide such summands and provides representations of classical groups on hypermatrices. The main natural application is a formal study of three-junctions of strings and membranes. Generalizations are also considered.Comment: 25 pages, 4 figures, presentation improved, minor correction

    Neutrosophic Rings I

    Get PDF
    In this paper, we present some elementary properties of neutrosophic rings. The structure of neutrosophic polynomial rings is also presented. We provide answers to the questions raised by Vasantha Kandasamy and Florentin Smarandache in [1] concerning principal ideals, prime ideals, factorization and Unique Factorization Domain in neutrosophic polynomial rings

    Generalized and Customizable Sets in R

    Get PDF
    We present data structures and algorithms for sets and some generalizations thereof (fuzzy sets, multisets, and fuzzy multisets) available for R through the sets package. Fuzzy (multi-)sets are based on dynamically bound fuzzy logic families. Further extensions include user-definable iterators and matching functions.

    Quantized Nambu-Poisson Manifolds and n-Lie Algebras

    Full text link
    We investigate the geometric interpretation of quantized Nambu-Poisson structures in terms of noncommutative geometries. We describe an extension of the usual axioms of quantization in which classical Nambu-Poisson structures are translated to n-Lie algebras at quantum level. We demonstrate that this generalized procedure matches an extension of Berezin-Toeplitz quantization yielding quantized spheres, hyperboloids, and superspheres. The extended Berezin quantization of spheres is closely related to a deformation quantization of n-Lie algebras, as well as the approach based on harmonic analysis. We find an interpretation of Nambu-Heisenberg n-Lie algebras in terms of foliations of R^n by fuzzy spheres, fuzzy hyperboloids, and noncommutative hyperplanes. Some applications to the quantum geometry of branes in M-theory are also briefly discussed.Comment: 43 pages, minor corrections, presentation improved, references adde

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value
    • …
    corecore