49 research outputs found

    Simplified and enhanced multiple level nested arrays exploiting high order difference co-arrays

    Get PDF
    Based on the high order difference co-array concept, an enhanced four level nested array (E-FL-NA) is first proposed, which optimizes the consecutive lags at the fourth order difference co-array stage. To simplify the formulations for sensor locations for comprehensive illustration and also convenient structure construction, a simplified and enhanced four level nested array (SE-FL-NA) is then proposed, whose performance is compromised but still better than the four level nested array (FL-NA). This simplified structure is further extended to the higher order case with multiple sub-arrays, referred to as simplified and enhanced multiple level nested arrays (SE-ML-NAs), where significantly increased degrees of freedom (DOFs) can be provided and exploited for underdetermined DOA estimation. Simulation results are provided to verify the superior performance of the proposed E-FL-NA, while a higher number of detectable sources is achieved by the SE-ML-NA with a limited number of physical sensors

    Twenty-five years of sensor array and multichannel signal processing: a review of progress to date and potential research directions

    Get PDF
    In this article, a general introduction to the area of sensor array and multichannel signal processing is provided, including associated activities of the IEEE Signal Processing Society (SPS) Sensor Array and Multichannel (SAM) Technical Committee (TC). The main technological advances in five SAM subareas made in the past 25 years are then presented in detail, including beamforming, direction-of-arrival (DOA) estimation, sensor location optimization, target/source localization based on sensor arrays, and multiple-input multiple-output (MIMO) arrays. Six recent developments are also provided at the end to indicate possible promising directions for future SAM research, which are graph signal processing (GSP) for sensor networks; tensor-based array signal processing, quaternion-valued array signal processing, 1-bit and noncoherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor arrays; and array signal processing for next-generation communication systems

    Statistical Nested Sensor Array Signal Processing

    Get PDF
    Source number detection and direction-of-arrival (DOA) estimation are two major applications of sensor arrays. Both applications are often confined to the use of uniform linear arrays (ULAs), which is expensive and difficult to yield wide aperture. Besides, a ULA with N scalar sensors can resolve at most N − 1 sources. On the other hand, a systematic approach was recently proposed to achieve O(N 2 ) degrees of freedom (DOFs) using O(N) sensors based on a nested array, which is obtained by combining two or more ULAs with successively increased spacing. This dissertation will focus on a fundamental study of statistical signal processing of nested arrays. Five important topics are discussed, extending the existing nested-array strategies to more practical scenarios. Novel signal models and algorithms are proposed. First, based on the linear nested array, we consider the problem for wideband Gaussian sources. To employ the nested array to the wideband case, we propose effective strategies to apply nested-array processing to each frequency component, and combine all the spectral information of various frequencies to conduct the detection and estimation. We then consider the practical scenario with distributed sources, which considers the spreading phenomenon of sources. Next, we investigate the self-calibration problem for perturbed nested arrays, for which existing works require certain modeling assumptions, for example, an exactly known array geometry, including the sensor gain and phase. We propose corresponding robust algorithms to estimate both the model errors and the DOAs. The partial Toeplitz structure of the covariance matrix is employed to estimate the gain errors, and the sparse total least squares is used to deal with the phase error issue. We further propose a new class of nested vector-sensor arrays which is capable of significantly increasing the DOFs. This is not a simple extension of the nested scalar-sensor array. Both the signal model and the signal processing strategies are developed in the multidimensional sense. Based on the analytical results, we consider two main applications: electromagnetic (EM) vector sensors and acoustic vector sensors. Last but not least, in order to make full use of the available limited valuable data, we propose a novel strategy, which is inspired by the jackknifing resampling method. Exploiting numerous iterations of subsets of the whole data set, this strategy greatly improves the results of the existing source number detection and DOA estimation methods

    Stochastic Cramer-Rao bound for DOA estimation with a mixture of circular and noncircular signals

    Get PDF
    The Cramer-Rao bound (CRB) offers insights into the inherent performance benchmark of any unbiased estimator developed for a specific parametric model, which is an important tool to evaluate the performance of direction-of-arrival (DOA) estimation algorithms. In this paper, a closed-form stochastic CRB for a mixture of circular and noncircular uncorrelated Gaussian signals is derived. As a general one, it can be transformed into some existing representative results. The existence condition of the CRB is also analysed based on sparse arrays, which allows the number of signals to be more than the number of physical sensors. Finally, numerical comparisons are conducted in various scenarios to demonstrate the validity of the derived CRB

    The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC

    Get PDF
    Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators

    Sparse Array Signal Processing

    Get PDF
    This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, we prove that the proposed algorithm converges to the set of Karush-Kuhn-Tucker stationary points. Numerical results exhibit its excellent performance, which is comparable to that of the exhaustive search approach, slightly better than those of the state-of-the-art solvers, and significantly outperforms several other sparse array design strategies, in terms of output SINR. Moreover, the proposed ADMM algorithm outperforms its competitors, in terms of computational cost. Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. In the second part of this thesis, we consider an array model in which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint DOA estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted in view of parameter selection, convergence speed, computational complexity, and performance of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the ADMM in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance. In the last part of this thesis, the problem of off-grid DOA estimation is investigated. We develop a method to jointly estimate the closest spatial frequency (the sine of DOA) grids, and the gaps between the estimated grids and the corresponding frequencies. By using a second-order Taylor approximation, the data model under the framework of joint-sparse representation is formulated. We point out an important property of the signals of interest in the model, namely the proportionality relationship. The proportionality relationship is empirically demonstrated to be useful in the sense that it increases the probability of the mixing matrix satisfying the block restricted isometry property. Simulation examples demonstrate the effectiveness and superiority of the proposed method against several state-of-the-art grid-based approaches

    Array Signal Processing Based on Traditional and Sparse Arrays

    Get PDF
    Array signal processing is based on using an array of sensors to receive the impinging signals. The received data is either spatially filtered to focus the signals from a desired direction or it may be used for estimating a parameter of source signal like direction of arrival (DOA), polarization and source power. Spatial filtering also known as beamforming and DOA estimation are integral parts of array signal processing and this thesis is aimed at solving some key probems related to these two areas. Wideband beamforming holds numerous applications in the bandwidth hungry data traffic of present day world. Several techniques exist to design fixed wideband beamformers based on traditional arrays like uniform linear array (ULA). Among these techniques, least squares based eigenfilter method is a key technique which has been used extensively in filter and wideband beamformer design. The first contribution of this thesis comes in the form of critically analyzing the standard eigenfilter method where a serious flaw in the design formulation is highlighted which generates inconsistent design performance, and an additional constraint is added to stabilize the achieved design. Simulation results show the validity and significance of the proposed method. Traditional arrays based on ULAs have limited applications in array signal processing due to the large number of sensors required and this problem has been addressed by the application of sparse arrays. Sparse arrays have been exploited from the perspective of their difference co-array structures which provide significantly higher number of degrees of freedoms (DOFs) compared to ULAs for the same number of sensors. These DOFs (consecutive and unique lags) are utilized in the application of DOA estimation with the help of difference co-array based DOA estimators. Several types of sparse arrays include minimum redundancy array (MRA), minimum hole array (MHA), nested array, prototype coprime array, conventional coprime array, coprime array with compressed interelement spacing (CACIS), coprime array with displaced subarrays (CADiS) and super nested array. As a second contribution of this thesis, a new sparse array termed thinned coprime array (TCA) is proposed which holds all the properties of a conventional coprime array but with \ceil*{\frac{M}{2}} fewer sensors where MM is the number of sensors of a subarray in the conventional structure. TCA possesses improved level of sparsity and is robust against mutual coupling compared to other sparse arrays. In addition, TCA holds higher number of DOFs utilizable for DOA estimation using variety of methods. TCA also shows lower estimation error compared to super nested arrays and MRA with increasing array size. Although TCA holds numerous desirable features, the number of unique lags offered by TCA are close to the sparsest CADiS and nested array and significantly lower than MRA which limits the estimation error performance offered by TCA through (compressive sensing) CS-based methods. In this direction, the structure of TCA is studied to explore the possibility of an array which can provide significantly higher number of unique lags with improved sparsity for a given number of sensors. The result of this investigation is the third contribution of this thesis in the form of a new sparse array, displaced thinned coprime array with additional sensor (DiTCAAS), which is based on a displaced version of TCA. The displacement of the subarrays generates an increase in the unique lags but the minimum spacing between the sensors becomes an integer multiple of half wavelength. To avoid spatial aliasing, an additional sensor is added at half wavelength from one of the sensors of the displaced subarray. The proposed placement of the additional sensor generates significantly higher number of unique lags for DiTCAAS, even more than the DOFs provided by MRA. Due to its improved sparsity and higher number of unique lags, DiTCAAS generates the lowest estimation error and robustness against heavy mutual coupling compared to super nested arrays, MRA, TCA and sparse CADiS with CS-based DOA estimation

    Sparse Array Signal Processing: New Array Geometries, Parameter Estimation, and Theoretical Analysis

    Get PDF
    Array signal processing focuses on an array of sensors receiving the incoming waveforms in the environment, from which source information, such as directions of arrival (DOA), signal power, amplitude, polarization, and velocity, can be estimated. This topic finds ubiquitous applications in radar, astronomy, tomography, imaging, and communications. In these applications, sparse arrays have recently attracted considerable attention, since they are capable of resolving O(N2) uncorrelated source directions with N physical sensors. This is unlike the uniform linear arrays (ULA), which identify at most N-1 uncorrelated sources with N sensors. These sparse arrays include minimum redundancy arrays (MRA), nested arrays, and coprime arrays. All these arrays have an O(N2)-long central ULA segment in the difference coarray, which is defined as the set of differences between sensor locations. This O(N2) property makes it possible to resolve O(N2) uncorrelated sources, using only N physical sensors. The main contribution of this thesis is to provide a new direction for array geometry and performance analysis of sparse arrays in the presence of nonidealities. The first part of this thesis focuses on designing novel array geometries that are robust to effects of mutual coupling. It is known that, mutual coupling between sensors has an adverse effect on the estimation of DOA. While there are methods to counteract this through appropriate modeling and calibration, they are usually computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as MRA, nested arrays, and coprime arrays, have reduced mutual coupling compared to ULA, but all of these have their own disadvantages. This thesis introduces a new array called the super nested array, which has many of the good properties of the nested array, and at the same time achieves reduced mutual coupling. Many theoretical properties are proved and simulations are included to demonstrate the superior performance of super nested arrays in the presence of mutual coupling. Two-dimensional planar sparse arrays with large difference coarrays have also been known for a long time. These include billboard arrays, open box arrays (OBA), and 2D nested arrays. However, all of them have considerable mutual coupling. This thesis proposes new planar sparse arrays with the same large difference coarrays as the OBA, but with reduced mutual coupling. The new arrays include half open box arrays (HOBA), half open box arrays with two layers (HOBA-2), and hourglass arrays. Among these, simulations show that hourglass arrays have the best estimation performance in presence of mutual coupling. The second part of this thesis analyzes the performance of sparse arrays from a theoretical perspective. We first study the Cramér-Rao bound (CRB) for sparse arrays, which poses a lower bound on the variances of unbiased DOA estimators. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not applicable in the context of sparse arrays for which the number of identifiable sources exceeds the number of sensors. This thesis derives a new expression for the CRB to fill this gap. Based on the proposed CRB expression, it is possible to prove the previously known experimental observation that, when there are more sources than sensors, the CRB stagnates to a constant value as the SNR tends to infinity. It is also possible to precisely specify the relation between the number of sensors and the number of uncorrelated sources such that these sources could be resolved. Recently, it has been shown that correlation subspaces, which reveal the structure of the covariance matrix, help to improve some existing DOA estimators. However, the bases, the dimension, and other theoretical properties of correlation subspaces remain to be investigated. This thesis proposes generalized correlation subspaces in one and multiple dimensions. This leads to new insights into correlation subspaces and DOA estimation with prior knowledge. First, it is shown that the bases and the dimension of correlation subspaces are fundamentally related to difference coarrays, which were previously found to be important in the study of sparse arrays. Furthermore, generalized correlation subspaces can handle certain forms of prior knowledge about source directions. These results allow one to derive a broad class of DOA estimators with improved performance. It is empirically known that the coarray structure is susceptible to sensor failures, and the reliability of sparse arrays remains a significant but challenging topic for investigation. This thesis advances a general theory for quantifying such robustness, by studying the effect of sensor failure on the difference coarray. We first present the (k-)essentialness property, which characterizes the combinations of the faulty sensors that shrink the difference coarray. Based on this, the notion of (k-)fragility is proposed to quantify the reliability of sparse arrays with faulty sensors, along with comprehensive studies of their properties. These novel concepts provide quite a few insights into the interplay between the array geometry and its robustness. For instance, for the same number of sensors, it can be proved that ULA is more robust than the coprime array, and the coprime array is more robust than the nested array. Rigorous development of these ideas leads to expressions for the probability of coarray failure, as a function of the probability of sensor failure. The thesis concludes with some remarks on future directions and open problems.</p

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360∘^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio
    corecore