710 research outputs found

    Research on Quality of Service Based Routing Protocols for Mobile Ad Hoc Networks

    Get PDF
    Quality of service (QoS) based routing protocols play a significant role in MANETs to maintain proper flow of data with efficient power consumption and without data loss. However, several network resource based technical challenges or issues are encountered in the design and implementation of QoS routing protocols that perform their routing function by considering the shortest route or the lowest cost. Furthermore, a secondary route is not reserved and alternative routes are not searched unless the established route is broken. The current structures of the state-of-the-art protocols for MANETs are not appropriate for today's high bandwidth and mobility requirements. Therefore, research on new routing protocols is needed, considering energy level, coverage, location, speed, movement, and link stability instead of only shortest path and lowest cost. This paper summarizes the main characteristics of QoS-based routing protocols to facilitate researchers to design and select QoS-based routing protocols. In this study, a wide range of protocols with their characteristics were classified according to QoS routing strategy, routing information update mechanism, interaction between network and MAC layer, QoS constraints, QoS guarantee type and number of discovered routes. In addition, the protocols were compared in terms of properties, design features, challenges and QoS metrics

    MAC/Routing layer interaction with Wireless Network Coding

    Get PDF

    Performance Evaluation of AODV Routing Protocol in VANET with NS2

    Get PDF
    In intelligent transportation systems, the collaboration between vehicles and the road side units is essential to bring these systems to realization. The emerging Vehicular Ad Hoc Network (VANET) is becoming more and more important as it provides intelligent transportation application, comfort, safety, entertainment for people in vehicles. In order to provide stable routes and to get good performance in VANET, there is a need of proper routing protocols must be designed. In this paper, we are working with the very well-known ad-hoc on-demand distance vector (AODV) routing protocol. The existing Routing protocol AODV-L which is based on the Link expiration time is extended to propose a more reliable AODV-AD which is based on multichannel MAC protocol. For the performance evaluation of routing protocols, a simulation tool ‘NS2’ has been used. Simulation results show that the proposed AODV-AD protocol can achieves better performances in forms of high Route stability, Packet Delivery ratio and packet loss rate than traditional AODV-L and traditional AODV

    Performance study of Hybrid Wireless Mesh Protocol(HWMP) for IEEE 802.11s WLAN Mesh Networks

    Get PDF
    Wireless Mesh Network (WMN) have been envisioned as an important solution to the next generation wireless networking which can be used in wireless community networks, wireless enterprise networks, transportation systems, home networking and last-mile wireless internet access. Many proprietary mesh solutions were developed by individual vendor but in order to interoperability; IEEE forms a task group called IEEE 802.11s to develop an integrated mesh networking solution. Hybrid Wireless Mesh protocol (HWMP) and airtime metrics as default routing protocol and routing metrics set by the task group. There is few test bed and many simulation studies have been done to evaluate the performance of the HWMP protocol with the assumption of unique type of flow with fixed packet size and packet rate. However, real networks carry a diverse application (video, voice, FTP, Email etc) with different characteristics (packet size, data rate). In this paper, we are investigated and analyzed the performance of HWMP protocol under such heterogeneous application characteristics

    Simulating mobile ad hoc networks: a quantitative evaluation of common MANET simulation models

    Get PDF
    Because it is difficult and costly to conduct real-world mobile ad hoc network experiments, researchers commonly rely on computer simulation to evaluate their routing protocols. However, simulation is far from perfect. A growing number of studies indicate that simulated results can be dramatically affected by several sensitive simulation parameters. It is also commonly noted that most simulation models make simplifying assumptions about radio behavior. This situation casts doubt on the reliability and applicability of many ad hoc network simulation results. In this study, we begin with a large outdoor routing experiment testing the performance of four popular ad hoc algorithms (AODV, APRL, ODMRP, and STARA). We present a detailed comparative analysis of these four implementations. Then, using the outdoor results as a baseline of reality, we disprove a set of common assumptions used in simulation design, and quantify the impact of these assumptions on simulated results. We also more specifically validate a group of popular radio models with our real-world data, and explore the sensitivity of various simulation parameters in predicting accurate results. We close with a series of specific recommendations for simulation and ad hoc routing protocol designers
    corecore