85 research outputs found

    Spatial Modeling of Compact Polarimetric Synthetic Aperture Radar Imagery

    Get PDF
    The RADARSAT Constellation Mission (RCM) utilizes compact polarimetric (CP) mode to provide data with varying resolutions, supporting a wide range of applications including oil spill detection, sea ice mapping, and land cover analysis. However, the complexity and variability of CP data, influenced by factors such as weather conditions and satellite infrastructure, introduce signature ambiguity. This ambiguity poses challenges in accurate object classification, reducing discriminability and increasing uncertainty. To address these challenges, this thesis introduces tailored spatial models in CP SAR imagery through the utilization of machine learning techniques. Firstly, to enhance oil spill monitoring, a novel conditional random field (CRF) is introduced. The CRF model leverages the statistical properties of CP SAR data and exploits similarities in labels and features among neighboring pixels to effectively model spatial interactions. By mitigating the impact of speckle noise and accurately distinguishing oil spill candidates from oil-free water, the CRF model achieves successful results even in scenarios where the availability of labeled samples is limited. This highlights the capability of CRF in handling situations with a scarcity of training data. Secondly, to improve the accuracy of sea ice mapping, a region-based automated classification methodology is developed. This methodology incorporates learned features, spatial context, and statistical properties from various SAR modes, resulting in enhanced classification accuracy and improved algorithmic efficiency. Thirdly, the presence of a high degree of heterogeneity in target distribution presents an additional challenge in land cover mapping tasks, further compounded by signature ambiguity. To address this, a novel transformer model is proposed. The transformer model incorporates both fine- and coarse-grained spatial dependencies between pixels and leverages different levels of features to enhance the accuracy of land cover type detection. The proposed approaches have undergone extensive experimentation in various remote sensing tasks, validating their effectiveness. By introducing tailored spatial models and innovative algorithms, this thesis successfully addresses the inherent complexity and variability of CP data, thereby ensuring the accuracy and reliability of diverse applications in the field of remote sensing

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Classification of Compact Polarimetric Synthetic Aperture Radar Images

    Get PDF
    The RADARSAT Constellation Mission (RCM) was launched in June 2019. RCM, in addition to dual-polarization (DP) and fully quad-polarimetric (QP) imaging modes, provides compact polarimetric (CP) mode data. A CP synthetic aperture radar (SAR) is a coherent DP system in which a single circular polarization is transmitted followed by the reception in two orthogonal linear polarizations. A CP SAR fully characterizes the backscattered field using the Stokes parameters, or equivalently, the complex coherence matrix. This is the main advantage of a CP SAR over the traditional (non-coherent) DP SAR. Therefore, designing scene segmentation and classification methods using CP complex coherence matrix data is advocated in this thesis. Scene classification of remotely captured images is an important task in monitoring the Earth's surface. The high-resolution RCM CP SAR data can be used for land cover classification as well as sea-ice mapping. Mapping sea ice formed in ocean bodies is important for ship navigation and climate change modeling. The Canadian Ice Service (CIS) has expert ice analysts who manually generate sea-ice maps of Arctic areas on a daily basis. An automated sea-ice mapping process that can provide detailed yet reliable maps of ice types and water is desirable for CIS. In addition to linear DP SAR data in ScanSAR mode (500km), RCM wide-swath CP data (350km) can also be used in operational sea-ice mapping of the vast expanses in the Arctic areas. The smaller swath coverage of QP SAR data (50km) is the reason why the use of QP SAR data is limited for sea-ice mapping. This thesis involves the design and development of CP classification methods that consist of two steps: an unsupervised segmentation of CP data to identify homogeneous regions (superpixels) and a labeling step where a ground truth label is assigned to each super-pixel. An unsupervised segmentation algorithm is developed based on the existing Iterative Region Growing using Semantics (IRGS) for CP data and is called CP-IRGS. The constituents of feature model and spatial context model energy terms in CP-IRGS are developed based on the statistical properties of CP complex coherence matrix data. The superpixels generated by CP-IRGS are then used in a graph-based labeling method that incorporates the global spatial correlation among super-pixels in CP data. The classifications of sea-ice and land cover types using test scenes indicate that (a) CP scenes provide improved sea-ice classification than the linear DP scenes, (b) CP-IRGS performs more accurate segmentation than that using only CP channel intensity images, and (c) using global spatial information (provided by a graph-based labeling approach) provides an improvement in classification accuracy values over methods that do not exploit global spatial correlation

    Assessing the potential of sentinel-1 and sentinel-2 satellite imagery for shoreline classification in support of oil spill preparedness and response

    Get PDF
    Coastal zones are critical ecosystems that provide important habitat for marine animals, fish, shellfish, birds, and many other species. However, there is a risk of mineral oil impacting in these areas due to human activities offshore. Shoreline classification is the first step to establishing response contingency plans in case of an oil spill. This study estimates the potential of using open-access, high-resolution Sentinel-1 and Sentinel-2 imagery for the mapping of shoreline types in support of oil spill preparedness and response activities. The two classification maps, depicting shoreline and coastal land cover, were produced using an advanced object-based Random Forest (RF) algorithm. Various features extracted from multi-source data, including spectral, texture, ratio, polarimetric features, and digital elevation model (DEM), were analyzed to identify the most valuable features for discrimination between different shoreline types. Multiple classification scenarios with the most useful features were then assessed and compared to find the best classification model. The developed algorithm achieved accuracies of 87.10% and 84.75% of coastal land cover and shoreline maps. These results demonstrated the high potential of using freely available Sentinel-1 and -2 satellite data for coastal mapping

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    The planning of a South African airborne synthetic aperture radar measuring campaign

    Get PDF
    Bibliography: leaves 153-163.This thesis sets out the results of work done in preparation for a South African Airborne Synthetic Aperture Radar (SAR) measuring campaign envisaged for 1994/5. At present both airborne and spaceborne SARs have found a niche in remote sensing with applications in subsurface mapping, surface moisture mapping, vegetation mapping, rock type discrimination and Digital Elevation Modelling. Since these applications have considerable scientific and economic benefits, the Radar Remote Sensing Group at the University of Cape Town committed themselves to an airborne SAR campaign. The prime objective of the campaign is to provide the South African users with airborne SAR data and enable the Radar Remote Sensing Group to evaluate the usefulness of SAR as a remote sensing tool in South Africa

    Sea Ice Mapping in Labrador Coast with Sentinel-1 Synthetic Aperture Radar Imagery

    Get PDF
    Sea ice mapping is crucial to Canadian coast, including marine transportation, environmental protection, resource management, disaster and emergency management, especially under current background of climate change. Canadian RADARSAT-2, like other synthetic aperture radar (SAR) sensors, is an essential source for current sea ice mapping in Canada, However, its limited revisiting makes daily ice chart generation challenging. The RADARSAT Constellation project is expected to be launched in 2018, the gap of data availability is expected to be filled with imagery from multiple sources. Sentinel-1, launched by European Space Agency (ESA) in late 2014, is an alternative source for sea ice mapping with comparable capability of RADARSAT-2 in wide swath mode. The main objective of this study is to examine the performance of Sentinel-1 imagery in sea ice mapping with a semi-automated image segmentation workflow. The methodology consists of two main steps. First, the most significant features in sea ice interpretation were determined using a random forest feature selection method. Second, an unsupervised graph-cut image segmentation is performed. The workflow was tested on 15 dual-polarized Sentinel-1A Extra Wide (EW) scenes in Labrador coast from December, 2015 to June, 2016, and the results were evaluated on the accuracy of water segmentation. The study found that: 1) GLCM features are effective in distinguishing different ice classes and 6 most important features were selected; 2) the proposed semi-automated workflow is able to segment Sentinel-1 imagery into 3 to 8 classes for water identification; and 3) generally Sentinel-1 imagery has similar responses from first-year ice compared with previous sensors, but with a different noise pattern in cross-polarized bands; and the overall accuracy of water identification reached close to 95%
    • …
    corecore