267 research outputs found

    Multi-Domain Integration with MOF and extended Triple Graph Grammars

    Get PDF

    Automated Model Synchronization: A Case Study on UML with Maude

    Get PDF
    Design specifications of software-intensive systems involve models that have been defined with different modelling languages for different purposes. Hence, a specification can be seen as the description of a system from multiple viewpoints, each providing domain-specific constructs for modelling the system in a more precise way. Such heterogeneity of models can jeopardize the consistency of the specification, because updates in one viewpoint may cause unpredictable design errors in other viewpoints, which can then be transferred to the implementation. OMG’s Meta-Object Facility enhances the automation of the model consistency management by providing a uniform format for different modelling languages. In this paper, we illustrate a technique, based on rewriting logic and on strategies for finding inconsistencies in MOF-based heterogeneous specifications and for resolving them in an automated way

    Using domain specific languages to capture design knowledge for model-based systems engineering

    Get PDF
    Design synthesis is a fundamental engineering task that involves the creation of structure from a desired functional specification; it involves both creating a system topology as well as sizing the system's components. Although the use of computer tools is common throughout the design process, design synthesis is often a task left to the designer. At the synthesis stage of the design process, designers have an extensive choice of design alternatives that need to be considered and evaluated. Designers can benefit from computational synthesis methods in the creative phase of the design process. Recent increases in computational power allow automated synthesis methods for rapidly generating a large number of design solutions. Combining an automated synthesis method with an evaluation framework allows for a more thorough exploration of the design space as well as for a reduction of the time and cost needed to design a system. To facilitate computational synthesis, knowledge about feasible system configurations must be captured. Since it is difficult to capture such synthesis knowledge about any possible system, a design domain must be chosen. In this thesis, the design domain is hydraulic systems. In this thesis, Model-Driven Software Development concepts are leveraged to create a framework to automate the synthesis of hydraulic systems will be presented and demonstrated. This includes the presentation of a domain specific language to describe the function and structure of hydraulic systems as well as a framework for synthesizing hydraulic systems using graph grammars to generate system topologies. Also, a method using graph grammars for generating analysis models from the described structural system representations is presented. This approach fits in the context of Model-Based Systems Engineering where a variety of formal models are used to represent knowledge about a system. It uses the Systems Modeling Language developed by The Object Management Group (OMG SysMLâ„¢) as a unifying language for model definition.M.S.Committee Chair: Paredis, Chris; Committee Member: McGinnis, Leon; Committee Member: Schaefer, Dir

    Multi-layer syntactical model transformation for model based systems engineering

    Get PDF
    This dissertation develops a new model transformation approach that supports engineering model integration, which is essential to support contemporary interdisciplinary system design processes. We extend traditional model transformation, which has been primarily used for software engineering, to enable model-based systems engineering (MBSE) so that the model transformation can handle more general engineering models. We identify two issues that arise when applying the traditional model transformation to general engineering modeling domains. The first is instance data integration: the traditional model transformation theory does not deal with instance data, which is essential for executing engineering models in engineering tools. The second is syntactical inconsistency: various engineering tools represent engineering models in a proprietary syntax. However, the traditional model transformation cannot handle this syntactic diversity. In order to address these two issues, we propose a new multi-layer syntactical model transformation approach. For the instance integration issue, this approach generates model transformation rules for instance data from the result of a model transformation that is developed for user model integration, which is the normal purpose of traditional model transformation. For the syntactical inconsistency issue, we introduce the concept of the complete meta-model for defining how to represent a model syntactically as well as semantically. Our approach addresses the syntactical inconsistency issue by generating necessary complete meta-models using a special type of model transformation.PhDCommittee Chair: Leon F. McGinnis; Committee Member: Charles Eastman; Committee Member: Chris Paredis; Committee Member: Joel Sokol; Committee Member: Marc Goetschalck

    What Algebraic Graph Transformations Can Do For Model Transformations

    Get PDF
    Model transformations are key activities in model-driven development (MDD). A number of model transformation approaches have emerged for different purposes and with different backgrounds. This paper focusses on the use of algebraic graph transformation concepts to specify and verify model transformations in MDD

    Model transformation by graph transformation: A comparative study

    Full text link
    This is an electronic version of the paper presented at the Model Transformation in Practice, held in Montego Bay on 2005Graph transformation has been widely used for expressing model transformations. Especially transformations of visual models can be naturally formulated by graph transformations, since graphs are well suited to describe the underlying structures of models. Based on a common sample model transformation, four different model transformation approaches are presented which all perform graph transformations. At first, a basic solution is presented and crucial points of model transformations are indicated. Subsequent solutions focus mainly on the indicated problems. Finally, a first comparison of the chosen approaches to model transformation is presented where the main ingredients of each approach are summarized

    Enterprise Modelling using Algebraic Graph Transformation - Extended Version

    Get PDF
    An analysis of today's situation at Credit Suisse has shown severe problems, because it is based on current best practices and ad-hoc modelling techniques to handle important aspects of security, risk and compliance. Based on this analysis we propose in this paper a new enterprise model which allows the construction, integration, transformation and evaluation of different organizational models in a big decentralized organization like Credit Suisse. The main idea of the new model framework is to provide small decentralized models and intra-model evaluation techniques to handle services, processes and rules separately for the business and IT universe on one hand and for human-centric and machine-centric concepts on the other hand. Furthermore, the new framework provides inter-modelling techniques based on algebraic graph transformation to establish the connection between different kinds of models and to allow integration of the decentralized models. In order to check for security, risk and compliance in a suitable way, our models and techniques are based on different kinds of formal methods. In this paper, we show that algebraic graph transformation techniques are useful not only for intra-modelling - using graph grammars for visual languages and graph constraints for requirements - but also for inter-modelling - using triple graph grammars for model transformation and integration. Altogether, we present the overall idea of our new model framework and show how to solve specific problems concerning intra- and inter-modelling as first steps. This should give evidence that our framework can also handle important other requirements for enterprise modelling in a big decentralized organization like Credit Suisse

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Towards the uniform manipulation of visual and textual languages in AToM3

    Full text link
    This is an electronic version of the paper presented at the III Jornadas de Programación y Lenguajes, held in Alicante on 2003This paper presents the approach taken in the multi-paradigm tool AToM3 for the integration of textual and visual languages in a uniform framework. The tool is used for the modelling, analysis and simulation of complex (physical or software) systems, where each system component may have to be described using a different formalism. The different visual or textual formalisms can be described in the form of meta-models using graphical, high-level notations such as Entity Relationship or UML class diagrams. From these descriptions, AToM3 is able to generate a customized modelling tool for the specified formalism. Models at any meta-level are stored as attributed, typed graphs and thus can be manipulated (simulated, transformed, optimized, etc.) by attributed graph grammars. In the case of a textual notation, from the meta-model description a front-end parser is semi-automatically generated that transforms the textual models into abstract syntax graphs (instances of the meta-model), and thus can be manipulated in a uniform way with the other visual notations. To illustrate these concepts, we present an example in which we define a meta-model for Computational Tree Logic and generate visual and textual parsers for the formalism.We would like to aknowledge the Spanish Ministry of Science and Technology (project TIC2002-01948) for partially supporting this work

    Model Synchronization for Software Evolution

    Get PDF
    Software evolution refers to continuous change that a software system endures from inception to retirement. Each change must be efficiently and tractably propagated across models representing the system at different levels of abstraction. Model synchronization activities needed to support the systematic specification and analysis of evolution activities are still not adequately identified and formally defined. In our research, we first introduce a formal notation for the representation of domain models and model instances to form the theoretical basis for the proposed model synchronization framework. Besides conforming to a generic MOF metamodel, we consider that each software model also relates to an application domain context (e.g., operating systems, web services). Therefore, we are addressing the problems of model synchronization by focusing on domain-specific contexts. Secondly, we identify and formally define model dependencies that are needed to trace and propagate changes across system models at different levels of abstraction, such as from design to source code. The approach for extraction of these dependencies is based on Formal Concept Analysis (FCA) algorithms. We further model identified dependencies using Unified Modeling Language (UML) profiles and constraints, and utilize the extracted dependency relations in the context of coarse-grained model synchronization. Thirdly, we introduce modeling semantics that allow for more complex profile-based dependencies using Triple Graph Grammar (TGG) rules with corresponding Object Constraint Language (OCL) constraints. The TGG semantics provide for fine-grained model synchronization, and enable compliance with the Query/View/Transformation (QVT) standards. The introduced framework is assessed on a large, industrial case study of the IBM Commerce system. The dependency extraction framework is applied to repositories of business process models and related source code. The extracted dependencies were evaluated by IBM developers, and the corresponding precision and recall values calculated with results that match the scope and goals of the research. The grammar-based model synchronization and dependency modelling using profiles has also been applied to the IBM Commerce system, and evaluated by the developers and architects involved in development of the system. The results of this experiment have been found to be valuable by stakeholders, and a patent codifying the results has been filed by the IBM organization and has been granted. Finally, the results of this experiment have been formalized as TGG rules, and used in the context of fine-grained model synchronization
    • …
    corecore