991 research outputs found

    Generalized Hybrid Evolutionary Algorithm Framework with a Mutation Operator Requiring no Adaptation

    Get PDF
    This paper presents a generalized hybrid evolutionary optimization structure that not only combines both nondeterministic and deterministic algorithms on their individual merits and distinct advantages, but also offers behaviors of the three originating classes of evolutionary algorithms (EAs). In addition, a robust mutation operator is developed in place of the necessity of mutation adaptation, based on the mutation properties of binary-coded individuals in a genetic algorithm. The behaviour of this mutation operator is examined in full and its performance is compared with adaptive mutations. The results show that the new mutation operator outperforms adaptive mutation operators while reducing complications of extra adaptive parameters in an EA representation

    Use of the q-Gaussian mutation in evolutionary algorithms

    Get PDF
    Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2

    A Weighted U Statistic for Genetic Association Analyses of Sequencing Data

    Full text link
    With advancements in next generation sequencing technology, a massive amount of sequencing data are generated, offering a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, this poses a great challenge for the statistical analysis of high-dimensional sequencing data. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a weighted U statistic, referred to as WU-seq, for the high-dimensional association analysis of sequencing data. Based on a non-parametric U statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used SKAT method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-seq to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol

    Evolutionary Algorithms with Mixed Strategy

    Get PDF
    corecore