40,791 research outputs found

    A non-destructive analytic tool for nanostructured materials : Raman and photoluminescence spectroscopy

    Full text link
    Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman spectroscopy is an important non-destructive tool, which provides enormous information on these materials. This understanding is not only interesting in its own right from a physicist's point of view, but can also be of considerable importance in optoelectronics and device applications of these materials in nanotechnology. The commercial Raman spectrometers are quite expensive. In this article, we have presented a relatively less expensive set-up with home-built collection optics attachment. The details of the instrumentation have been described. Studies on four classes of nanostructures - Ge nanoparticles, porous silicon (nanowire), carbon nanotubes and 2D InGaAs quantum layers, demonstrate that this unit can be of use in teaching and research on nanomaterials.Comment: 32 pages, 13 figure

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    The Use of Multi-beam Sonars to Image Bubbly Ship Wakes

    Get PDF
    During the past five years, researchers at Penn State University (PSU) have used upward-looking multi-beam (MB) sonar to image the bubbly wakes of surface ships. In 2000, a 19-beam, 5° beam width, 120° sector, 250 kHz MB sonar integrated into an autonomous vehicle was used to obtain a first-of-a-kind look at the three-dimensional variability of bubbles in a large ship wake. In 2001 we acquired a Reson 8101 MB sonar, which operates at 240 kHz and features 101-1.5º beams spanning a 150º sector. In July 2002, the Reson sonar was deployed looking upward from a 1.4 m diameter buoy moored at 29.5 m depth in 550 m of water using three anchor lines. A fiber optic cable connected the sonar to a support ship 500 m away. Images of the wake of a small research vessel provided new information about the persistence of bubble clouds in the ocean. An important goal is to use the MB sonar to estimate wake bubble distributions, as has been done with single beam sonar. Here we show that multipath interference and strong, specular reflections from the sea surface adversely affect the use of MB sonars to unambiguously estimate wake bubble distributio

    A Bayesian approach for energy-based estimation of acoustic aberrations in high intensity focused ultrasound treatment

    Get PDF
    High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue that uses a beam of ultrasound to generate heat within a small volume. A common challenge in application of this technique is that heterogeneity of the biological medium can defocus the ultrasound beam. Here we reduce the problem of refocusing the beam to the inverse problem of estimating the acoustic aberration due to the biological tissue from acoustic radiative force imaging data. We solve this inverse problem using a Bayesian framework with a hierarchical prior and solve the inverse problem using a Metropolis-within-Gibbs algorithm. The framework is tested using both synthetic and experimental datasets. We demonstrate that our approach has the ability to estimate the aberrations using small datasets, as little as 32 sonication tests, which can lead to significant speedup in the treatment process. Furthermore, our approach is compatible with a wide range of sonication tests and can be applied to other energy-based measurement techniques

    Ecological Theory of Language Acquisition

    Get PDF
    This poster outlines an Ecological Theory of Language Acquisition (ETLA). The theory views the early phases of the language acquisition process as an emergent consequence of the interaction between the infant and its linguistic environment. The newborn infant is considered to be linguistically and phonetically naïve but endowed with the ability to register a wide range of multi-sensory inputs along with the ability to detect similarity between the multi-sensory stimuli it is exposed to. The initial steps of the language acquisition process are explained as unintended and inevitable consequences of the infant’s multisensory interaction with the adult. The theoretical model deriving from ETLA is tested using the experimental data presented in the two additional contributions from our research team (Gustavsson et al, “Integration of audiovisual information in 8-months-old infants”; Lacerda, Marklund et al. “On the linguistic implications of context-bound adult-infant interactions”). The generality of the ETLA’s concept is likely to be of significance for a wide range of scientific areas, like robotics, where a central issue concerns addressing general problems of how organisms or systems might develop the ability to tap on the structure of the information embedded in their operating environments

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Development of an integrated low-power RF partial discharge detector

    Get PDF
    This paper presents the results from integrating a low-power partial discharge detector with a wireless sensor node designed for operating as part of an IEEE 802.15.4 sensor network, and applying an on-line classifier capable of classifying partial discharges in real-time. Such a system is of benefit to monitoring engineers as it provides a means to exploit the RF technique using a low-cost device while circumventing the need for any additional cabling associated with new condition monitoring systems. The detector uses a frequency-based technique to differentiate between multiple defects, and has been integrated with a SunSPOT wireless sensor node hosting an agent-based monitoring platform, which includes a data capture agent and rule induction agent trained using experimental data. The results of laboratory system verification are discussed, and the requirements for a fully robust and flexible system are outlined

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic
    corecore