454 research outputs found

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    Enhanced Assessment of the Wound-Healing Process by Accurate Multiview Tissue Classification

    Full text link

    Joint Motion, Semantic Segmentation, Occlusion, and Depth Estimation

    Get PDF
    Visual scene understanding is one of the most important components of autonomous navigation. It includes multiple computer vision tasks such as recognizing objects, perceiving their 3D structure, and analyzing their motion, all of which have gone through remarkable progress over the recent years. However, most of the earlier studies have explored these components individually, and thus potential benefits from exploiting the relationship between them have been overlooked. In this dissertation, we explore what kind of relationship the tasks can present, along with the potential benefits that could be discovered from jointly formulating multiple tasks. The joint formulation allows each task to exploit the other task as an additional input cue and eventually improves the accuracy of the joint tasks. We first present the joint estimation of semantic segmentation and optical flow. Though not directly related, the tasks provide an important cue to each other in the temporal domain. Semantic information can provide information on plausible physical motion of its associated pixels, and accurate pixel-level temporal correspondences enhance the temporal consistency of semantic segmentation. We demonstrate that the joint formulation improves the accuracy of both tasks. Second, we investigate the mutual relationship between optical flow and occlusion estimation. Unlike most previous methods considering occlusions as outliers, we highlight the importance of jointly reasoning the two tasks in the optimization. Specifically through utilizing forward-backward consistency and occlusion-disocclusion symmetry in the energy, we demonstrate that the joint formulation brings substantial performance benefits for both tasks on standard benchmarks. We further demonstrate that optical flow and occlusion can exploit their mutual relationship in Convolutional Neural Network as well. We propose to iteratively and residually refine the estimates using a single weight-shared network, which substantially improves the accuracy without adding network parameters or even reducing them depending on the backbone networks. Next, we propose a joint depth and 3D scene flow estimation from only two temporally consecutive monocular images. We solve this ill-posed problem by taking an inverse problem view. We design a single Convolutional Neural Network that simultaneously estimates depth and 3D motion from a classical optical flow cost volume. With self-supervised learning, we leverage unlabeled data for training, without concerns about the shortage of 3D annotation for direct supervision. Finally, we conclude by summarizing the contributions and discussing future perspectives that can resolve current challenges our approaches have

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    Moving cast shadows detection methods for video surveillance applications

    Get PDF
    Moving cast shadows are a major concern in today’s performance from broad range of many vision-based surveillance applications because they highly difficult the object classification task. Several shadow detection methods have been reported in the literature during the last years. They are mainly divided into two domains. One usually works with static images, whereas the second one uses image sequences, namely video content. In spite of the fact that both cases can be analogously analyzed, there is a difference in the application field. The first case, shadow detection methods can be exploited in order to obtain additional geometric and semantic cues about shape and position of its casting object (’shape from shadows’) as well as the localization of the light source. While in the second one, the main purpose is usually change detection, scene matching or surveillance (usually in a background subtraction context). Shadows can in fact modify in a negative way the shape and color of the target object and therefore affect the performance of scene analysis and interpretation in many applications. This chapter wills mainly reviews shadow detection methods as well as their taxonomies related with the second case, thus aiming at those shadows which are associated with moving objects (moving shadows).Peer Reviewe

    SENSE: a Shared Encoder Network for Scene-flow Estimation

    Full text link
    We introduce a compact network for holistic scene flow estimation, called SENSE, which shares common encoder features among four closely-related tasks: optical flow estimation, disparity estimation from stereo, occlusion estimation, and semantic segmentation. Our key insight is that sharing features makes the network more compact, induces better feature representations, and can better exploit interactions among these tasks to handle partially labeled data. With a shared encoder, we can flexibly add decoders for different tasks during training. This modular design leads to a compact and efficient model at inference time. Exploiting the interactions among these tasks allows us to introduce distillation and self-supervised losses in addition to supervised losses, which can better handle partially labeled real-world data. SENSE achieves state-of-the-art results on several optical flow benchmarks and runs as fast as networks specifically designed for optical flow. It also compares favorably against the state of the art on stereo and scene flow, while consuming much less memory.Comment: ICCV 2019 Ora
    • …
    corecore