2,004 research outputs found

    Multi-Column Generation Model for the Locomotive Assignment Problem

    Get PDF
    We propose a new decomposition model and a multi-column generation algorithm for solving the Locomotive Assignment Problem (LAP). The decomposition scheme relies on consist configurations, where each configuration is made of a set of trains pulled by the same set of locomotives. We use the concept of conflict graphs in order to reduce the number of trains to be considered in each consist configuration generator problem: this contributes to significantly reduce the fraction of the computational times spent in generating new potential consists. In addition, we define a column generation problem for each set of variables, leading to a multi-column generation process, with different types of columns. Numerical results, with different numbers of locomotives, are presented on adapted data sets coming from Canada Pacific Railway (CPR). They show that the newly proposed algorithm is able to solve exactly realistic data instances for a timeline spanning up to 6 weeks, in very reasonable computational times

    Optimization of Locomotive Management and Fuel Consumption in Rail Freight Transport

    Get PDF
    For the enormous capital investment and high operation expense of locomotives, the locomotive management/assignment and fuel consumption are two of the most important areas for railway industry, especially in freight train transportation. Several algorithms have been developed for the Locomotive Assignment Problem (LAP), including exact mathematics models, approximate dynamic programming and heuristics. These previously published optimization algorithms suffer from scalability or solution accuracy issues. In addition, each of the optimization models lacks part of the constraints that are necessary in real-world train/locomotive operation, e.g., maintenance/shop constraints or consist busting avoidance. Furthermore, there are rarely research works for the reduction of total train energy consumption on the locomotive assignment level. The thesis is organized around our three main contributions. Firstly we propose a “consist travel plan” based LAP optimization model, which covers all the required meaningful constraints and which can efficiently be solved using large scale optimization techniques, namely column generation (CG) decomposition. Our key contribution is that our LAP model can evaluate the occurrence of consist busting using the number of consist travel plans, and allows locomotive status transformation in flow conservation constraints. In addition, a new column generation acceleration architecture is developed, that allows the subproblem, i.e., column generator to create multiple columns in each iteration, that each is an optimal solution for a reduced sub-network. This new CG architecture reduces computational time greatly comparing to our original LAP model. For train fuel consumption, we derive, linearize and integrate a train fuel consumption model into our LAP model. In addition, we establish a conflict-free pre-process for time windows for train rescheduling without touching train-meet time and position. The new LAP-fuel consumption model works fine for the optimization of the train energy exhaustion on the locomotive assignment level. For the optimization models above, the numerical results are conducted on the railway network infrastructure of Canada Pacific Railway (CPR), with up to 1,750 trains and 9 types of locomotives over a two-week time period in the entire CPR railway network

    Modeling and Solving of Railway Optimization Problems

    Get PDF
    The main aim of this work is to provide decision makers suitable approaches for solving two crucial planning problems in the railway industry: the locomotive assignment problem and the crew scheduling problem with attendance rates. On the one hand, the focus is on practical usability and the necessary integration and consideration of real-life requirements in the planning process. On the other hand, solution approaches are to be developed, which can provide solutions of sufficiently good quality within a reasonable time by taking all these requirements into account

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    A branch-and-price approach for solving the train unit scheduling problem

    Get PDF
    We propose a branch-and-price approach for solving the integer multicommodity flow model for the network-level train unit scheduling problem (TUSP). Given a train operator’s fixed timetable and a fleet of train units of different types, the TUSP aims at determining an assignment plan such that each train trip in the timetable is appropriately covered by a single or coupled train units. The TUSP is challenging due to its complex nature. Our branch-and-price approach includes a branching system with multiple branching rules for satisfying real-world requirements that are difficult to realize by linear constraints, such as unit type coupling compatibility relations and locations banned for coupling/decoupling. The approach also benefits from an adaptive node selection method, a column inheritance strategy and a feature of estimated upper bounds with node reservation functions. The branch-and-price solver designed for TUSP is capable of handling instances of up to about 500 train trips. Computational experiments were conducted based on real-world problem instances from First ScotRail. The results are satisfied by rail practitioners and are generally competitive or better than the manual ones

    Maintenance scheduling in rolling stock circulations in rapid transit networks

    Get PDF
    The railway routing problem determines specific paths for each individual train, given its type and composition and considering possible maintenance locations and durations. The objective is to minimize operating costs and penalties related to waiting times and maintenance all while considering train scheduling and maintenance constraints. The model is solved using Branch and Bound and Column Generation approaches. In the paper the different approaches are compared for different planning horizons and model parameter settings. The computational tests have been run in a real RENFE network

    A Comparison of Two Exact Methods for Passenger Railway Rolling Stock (Re)Scheduling

    Get PDF
    The assignment of rolling stock units to timetable services in passenger railways is an important optimization problem that has been addressed by many papers in different forms. Solution approaches have been proposed for different planning phases: strategic, tactical, and also operational planning. In this paper we compare two approaches within two operational planning phases (i.e. the daily and the real time planning). The first exact approach is based on a Mixed Integer Linear Program (MILP) which is solved using CPLEX. The second approach is an extension of a recently introduced column generation approach. In this paper, we benchmark the performance of the methods on networks of two countries (Denmark and The Netherlands). We use the approaches to make daily schedules and we test their real time applicability by performing tests with different disruption scenarios. The computational experiments demonstrate that both models can be used on both networks and are able to find optimal rolling stock circulations in the different planning phase
    corecore