16 research outputs found

    A novel unipolar transmission scheme for visible light communication

    Get PDF
    This paper proposes a novel unipolar transceiver for visible light communication (VLC) by using orthogonal waveforms. The main advantage of our proposed scheme over most of the existing unipolar schemes in the literature is that the polarity of the real-valued orthogonal frequency division multiplexing (OFDM) sample determines the pulse shape of the continuous-time signal and thus, the unipolar conversion is performed directly in the analog instead of the digital domain. Therefore, our proposed scheme does not require any direct current (DC) biasing or clipping as it is the case with existing schemes in the literature. The bit error rate (BER) performance of our proposed scheme is analytically derived and its accuracy is verified by using Matlab simulations. Simulation results also substantiate the potential performance gains of our proposed scheme against the state-of-the-art OFDM-based systems in VLC; it indicates that the absence of DC shift and clipping in our scheme supports more reliable communication and outperforms the asymmetrically clipped optical-OFDM (ACO-OFDM), DC optical-OFDM (DCO-OFDM) and unipolar-OFDM (U-OFDM) schemes. For instance, our scheme outperforms ACO-OFDM by at least 3 dB (in terms of signal to noise ratio) at a target BER of 10 −4 , when considering the same spectral efficiency for both schemes

    PAPR reduction in multicarrier modulation techniques based visible light communication systems

    Get PDF
    Visible light communication (VLC) is an optical wireless communication (OWC) technology that has the potential to provide high data rate transmission for indoor applications. VLC is a promising alternative technology with a large and unlicensed spectrum to complement the congested radio frequency (RF) based communication in order to meet the exponential growth and popularity of smart devices, data intensive services and applications. The use of low-cost commercially available front-end devices further highlights the attraction of VLC system. However, nonlinear dynamic range of front-end devices and optical channel impairments limit full exploitation of VLC available modulation bandwidth. To fully benefit from the inherent resources and mitigate these limitations, multicarrier modulation (MCM) techniques are adopted. However, these techniques are affected by high peak-to-average power ratio (PAPR) which imposes constraints on the limited dynamic range of the front-end devices and the average radiated optical power. The main focus throughout this thesis is to reduce the high PAPR of MCM modulation techniques-based VLC system by implementing pilot-assisted (PA) technique. Additionally, performance of PAPR reduced modulation techniques is investigated through analytical, simulation, and experimentally. This thesis first presents background of VLC system principles including the front-end devices, VLC channel, system impairments and challenges, and employed solutions. The principles, limitations, and performance of MCM modulation variants that are implemented in this work are presented. Moreover, principles of PAPR challenge in MCM based VLC, PAPR evaluation, impact on the transmitted signal as well as the existing PAPR reduction techniques are discussed. Looking at the gap, a PA is implemented as PAPR reduction technique which is presented in this work including its implementation and performance. Following that, multiple experimental studies on PAPR reduction of PA technique are presented. Two experimental demonstrations on the efficacy of PA PAPR reduction for PAM-DMT and DCO-OFDM based VLC using a single blue LED are presented. These studies are comparing the bit-error-rate (BER) performance of the proposed systems with conventional counterparts over a range of sampling rate. This shows that, the proposed systems perform better than conventional systems without PAPR reduction. The results are validated through simulation. Other two experimental studies on the previous systems with parameters optimisation and available modulation bandwidth utilisation are presented, which show that the proposed systems outperform the conventional systems in terms of BER. This is followed by investigating the PA PAPR reduction effect on the achievable data rate of a wavelength division multiplexing (WDM) based VLC system using three different LEDs for PAPR reduced DCO-OFDM and PAM-DMT systems. The proposed systems have achieved more than 8% data rate higher than that of conventional systems without BER performance degradation. Finally, analytical investigation of clipping noise that leads to distortion in a VLC system due to front-end devices limitations is presented. To mitigate the clipping noise, PAPR of the system is reduced by the PA technique. The analytical BER performance of the system with PAPR reduction is verified through simulation and then compared to that of the conventional system without PAPR reduction at similar clipping levels. The PA proposed system shows better BER performance at all clipping levels

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Analytical Characterization and Optimum Detection of Nonlinear Multicarrier Schemes

    Get PDF
    It is widely recognized that multicarrier systems such as orthogonal frequency division multiplexing (OFDM) are suitable for severely time-dispersive channels. However, it is also recognized that multicarrier signals have high envelope fluctuations which make them especially sensitive to nonlinear distortion effects. In fact, it is almost unavoidable to have nonlinear distortion effects in the transmission chain. For this reason, it is essential to have a theoretical, accurate characterization of nonlinearly distorted signals not only to evaluate the corresponding impact of these distortion effects on the system’s performance, but also to develop mechanisms to combat them. One of the goals of this thesis is to address these challenges and involves a theoretical characterization of nonlinearly distorted multicarrier signals in a simple, accurate way. The other goal of this thesis is to study the optimum detection of nonlinearly distorted, multicarrier signals. Conventionally, nonlinear distortion is seen as a noise term that degrades the system’s performance, leading even to irreducible error floors. Even receivers that try to estimate and cancel it have a poor performance, comparatively to the performance associated to a linear transmission, even with perfect cancellation of nonlinear distortion effects. It is shown that the nonlinear distortion should not be considered as a noise term, but instead as something that contains useful information for detection purposes. The adequate receiver to take advantage of this information is the optimum receiver, since it makes a block-by-block detection, allowing us to exploit the nonlinear distortion which is spread along the signal’s band. Although the optimum receiver for nonlinear multicarrier schemes is too complex, due to its necessity to compare the received signal with all possible transmitted sequences, it is important to study its potential performance gains. In this thesis, it is shown that the optimum receiver outperforms the conventional detection, presenting gains not only relatively to conventional receivers that deal with nonlinear multicarrier signals, but also relatively to conventional receivers that deal with linear, multicarrier signals. We also present sub-optimum receivers which are able to approach the performance gains associated to the optimum detection and that can even outperform the conventional linear, multicarrier schemes

    Déploiement de réseaux optiques d'accès NGPON dans des métropoles de pays en développement : proposition de nouvelles techniques d'implémentation de l'OFDM

    Get PDF
    The rapid development of multimedia services and applications such as broadband Internet, 3G, LTE, has led customers to force operators to increase throughput of all network segments, including the access network. Solutions using optical fiber tend to gradually replace cable based-copper or coaxial communications to ensure larger transfer capacity. The optical fiber is a very attractive medium because its linear attenuation is very low and its bandwidth very high. However, the chromatic dispersion of the fiber associated with the chirp of the optical sources limit the rise in flowrate in future optical access networks (beyond rates of 10 Gb/s) NG-PON (Next Generation Passive Optical Network). In this context, modulation formats with higher spectral efficiency than NRZ-OOK could be selected. OFDM is a solution to increase the spectral efficiency, while ensuring a better performance and high robustness against frequency selective channel such as fiber optics. In this thesis, we proposed a new OFDM techniques implementation for NG-PON and evaluated their performance in an IM/DD channel. We showed by simulations system of a realistic optical channel, that New DCO, New INC-ACO and DC-ACO OFDM techniques are able to increase the limited transmission distances imposed by the NRZ-OOK modulation with the use of low-cost components. Thus, we showed that using the “Minimization and E-Tight (MET)”or the Levin-Campello algorithm, the New DCO and DC-ACO techniques permit to achieve data rates of 10 Gb/s with a split ratio of 1 × 64 over a distance of 70 km with New DCO and 55 km for DC-ACO. Then we conclude that the New AMOFDM approach is a good choice for the deployment of optical access networks in metropolitan cities of developing countries.L’évolution rapide des services et applications multimédias (Internet haut débit, 3G, LTE) a entrainé un besoin chez les clients qui contraint les opérateurs à augmenter le débit de tous les segments du réseau, y compris le réseau d’accès. Les solutions utilisant la fibre optique tendent à remplacer progressivement les liaisons câblées (cuivre ou coaxial) afin de garantir des capacités de transfert plus importantes. La fibre optique est un medium très attractif car son atténuation linéique est très faible et sa bande passante importante. Cependant la dispersion chromatique de la fibre associée au chirp des sources optiques limite la montée en débit dans les futurs réseaux d’accès optiques (débits au-delà de 10 Gb/s) NG-PON (Next Generation Passive Optical Network). Dans ce contexte, des formats de modulation à efficacité spectrale meilleure que le NRZ pourraient être retenus. L’OFDM est une solution pour accroître l’efficacité spectrale, tout en garantissant une meilleure performance et une grande robustesse face aux canaux sélectifs en fréquence comme la fibre optique. Dans ce travail de thèse, nous avons proposé de nouvelles techniques d’implémentation de l’OFDM pour le NG-PON et évalué leurs performances dans un canal IM/DD. Nous avons montré par des simulations système dans un canal optique réaliste, que les techniques New DCO, New INC-ACO et DC-ACO sont capables d’augmenter les limitations de distances de transmission imposées par la modulation NRZ-OOK (Non-Return to Zero On-Off Keying) avec l’utilisation de composants bas coût. Ainsi, nous avons montré qu’avec les méthodes «MET (Minimization E-Tight)» et Levin-Campello, les techniques New DCO et DC-ACO permettent de réaliser des débits de 10 Gb/s sur une distance de 70 km en New DCO et 55 km en DC-ACO avec un taux de partage de 1×64. Cela permet d’affirmer que l’approche New AMOFDM serait un bon candidat pour le déploiement de réseaux d’accès optiques dans les métropoles de pays en développement

    A two phase framework for visible light-based positioning in an indoor environment: performance, latency, and illumination

    Full text link
    Recently with the advancement of solid state lighting and the application thereof to Visible Light Communications (VLC), the concept of Visible Light Positioning (VLP) has been targeted as a very attractive indoor positioning system (IPS) due to its ubiquity, directionality, spatial reuse, and relatively high modulation bandwidth. IPSs, in general, have 4 major components (1) a modulation, (2) a multiple access scheme, (3) a channel measurement, and (4) a positioning algorithm. A number of VLP approaches have been proposed in the literature and primarily focus on a fixed combination of these elements and moreover evaluate the quality of the contribution often by accuracy or precision alone. In this dissertation, we provide a novel two-phase indoor positioning algorithmic framework that is able to increase robustness when subject to insufficient anchor luminaries and also incorporate any combination of the four major IPS components. The first phase provides robust and timely albeit less accurate positioning proximity estimates without requiring more than a single luminary anchor using time division access to On Off Keying (OOK) modulated signals while the second phase provides a more accurate, conventional, positioning estimate approach using a novel geometric constrained triangulation algorithm based on angle of arrival (AoA) measurements. However, this approach is still an application of a specific combination of IPS components. To achieve a broader impact, the framework is employed on a collection of IPS component combinations ranging from (1) pulsed modulations to multicarrier modulations, (2) time, frequency, and code division multiple access, (3) received signal strength (RSS), time of flight (ToF), and AoA, as well as (4) trilateration and triangulation positioning algorithms. Results illustrate full room positioning coverage ranging with median accuracies ranging from 3.09 cm to 12.07 cm at 50% duty cycle illumination levels. The framework further allows for duty cycle variation to include dimming modulations and results range from 3.62 cm to 13.15 cm at 20% duty cycle while 2.06 cm to 8.44 cm at a 78% duty cycle. Testbed results reinforce this frameworks applicability. Lastly, a novel latency constrained optimization algorithm can be overlaid on the two phase framework to decide when to simply use the coarse estimate or when to expend more computational resources on a potentially more accurate fine estimate. The creation of the two phase framework enables robust, illumination, latency sensitive positioning with the ability to be applied within a vast array of system deployment constraints

    Améliorations des transmissions VLC (Visible Light Communication) sous contrainte d'éclairage : études théoriques et expérimentations

    Get PDF
    Abstract : Indoor visible light communication (VLC) networks based on light-emitting diodes (LEDs) currently enjoy growing interest thanks in part to their robustness against interference, wide license-free available bandwidth, low cost, good energy efficiency and compatibility with existing lighting infrastructure. In this thesis, we investigate spectral-efficient modulation techniques for the physical layer of VLC to increase throughput while considering the quality of illumination as well as implementation costs. Numerical and experimental studies are performed employing pulse amplitude modulation (PAM) and carrierless amplitude and phase (CAP) modulation under illumination constraints and for high modulation orders. Furthermore, the impact of LED nonlinearity is investigated and a postdistortion technique is evaluated to compensate these nonlinear effects. Within this framework, transmission rates in the order of a few hundred Mb/s are achieved using a test bench made of low-cost components. In addition, an imaging multiple input multiple-output (MIMO) system is developed and the impact on performance of imaging lens misalignment is theoretically and numerically assessed. Finally, a polynomial matrix decomposition technique based on the classical LU factorization method is studied and applied for the first time to MIMO VLC systems in large space indoor environments.Les réseaux de communication en lumière visible (VLC) s’appuyant sur l’utilisation de diodes électroluminescentes (LED) bénéficient actuellement d’un intérêt grandissant, en partie grâce à leur robustesse face aux interférences électromagnétiques, leur large bande disponible non-régulée, leur faible coût, leur bonne efficacité énergétique, ainsi que leur compatibilité avec les infrastructures d’éclairage déjà existantes. Dans cette thèse, nous étudions des techniques de modulation à haute efficacité spectrale pour la couche physique des VLC pour augmenter les débits tout en considérant la qualité de l’éclairage ainsi que les coûts d’implémentation. Des études numériques et expérimentales sont réalisées sur la modulation d’impulsion d’amplitude (PAM) et sur la modulation d’amplitude et de phase sans porteuse (CAP) sous des contraintes d’éclairage et pour des grands ordres de modulation. De plus, l’impact des non-linéarités de la LED est étudié et une technique de post-distorsion est évaluée pour corriger ces effets non-linéaires. Dans ce cadre, des débits de plusieurs centaines de Mb/s sont atteints en utilisant un banc de test réalisé à partir de composants à bas coûts. Par ailleurs, un système multi-entrées multi-sorties (MIMO) imageant est également développé et l’impact du désaxage de l’imageur sur les performances est étudié. Finalement, une technique de décomposition polynomiale basée sur la méthode de factorisation classique LU est étudiée et appliquée aux systèmes MIMO VLC dans des grands espaces intérieurs

    Desenho da camada DLL para sistemas de comunicação por luz visível

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesWith the advent of the Information Age, communication systems have become the backbone of our society. The modern society strives to nd instant access to speci c sources of information to make time-constrained decisions. Therefore, the twenty- rst century is marked by a growing demand for bandwidth in wireless communications, as it allows users to communicate and access daily applications even from remote areas. Up to the present time, numerous breakthroughs in wireless communications were accomplished but mainly using the radio portion of the electromagnetic spectrum, which made RF to take the central role in today's communication systems. However, RF technology is a victim of its own success. Due to the tremendous increase in the number of mobile devices, RF technology cannot cope much longer with this market demand and will eventually reach a saturation point. VLC is a recently appealing technique in the eld of wireless communications that intends to complement RF technologies and is sought by many researchers as a viable alternative. VLC based on Light Emitting Diode (LED) takes advantage of these solid-state devices superior modulation capability to transmit data while assuring their lighting functionality. This work addresses the problem of achieving high bandwidth in a DLL design for OFDM based VLC broadcast systems and is inserted in a funded project called VLCLighting. The main objective of this dissertation work is to implement an e cient DLL in a Microblaze soft processor in a FPGA and to study its usage in a broadcast VLC system for lighting systems. Since two value added services were identi ed in the VLCLighting project, the proposed DLL aims at furnishing the adequate means to fragment and route those services requests while maintaining a continuous transmission ow that assures lighting and transceiver functionality. This work proposes a DLL design that was inspired in DVB and project OMEGA systems, able to describe the required amendments to full ll VLCLighting goals.Com a chegada da era da Informação, os sistemas de comunicação tornaram-se na espinha dorsal da nossa sociedade. A Sociedade Moderna esforça-se por ter acesso instantâneo a fontes de informação específicas para tomar decisões limitadas pelo tempo. Portanto, o século XXI está marcado pela crescente exigência da largura de banda nas comunicações sem fios, pois tal permite aos utilizadores comunicarem e acederem as aplicações a partir de áreas longínquas. Até ao momento, foram alcançados diversos avanços/descobertas na largura de banda das comunicações sem fos, mas tal tem sido conseguido usando o intervalo de radiofrequências (RF) do espectro eletromagnético e que fez com que o RF ficasse com o papel principal nos sistemas de comunicação de hoje. Contudo, a Tecnologia RF e vitima do seu próprio sucesso. Devido ao tremendo aumento do número de aparelhos de comunicação móveis, a tecnologia RF não pode lidar muito mais tempo com a exigência dos mercados e atingirá o seu ponto de saturação. VLC (Comunicação através de luz visivel) é uma tecnica recente muito apelativa no campo das comunicações sem-fios e que pretende ser um complemento à tecnologia RF, sendo considerada por muitos investigadores como uma alternativa viável. Esta dissertação discute o problema de se alcançar uma grande taxa de transmissão com a implementação de uma Data Link Layer (DLL) direccionada para sistemas VLC com modulação OFDM e está inserida num projecto financiado intitulado VLCLighting. O objectivo principal desta dissertação consiste na implementação de um DLL eficiente num processador Microblaze numa Field-Programmable Gate Array (FPGA) e no estudo da sua utilização em sistemas VLC para uso combinado em sistemas de iluminação. Uma vez que foram identificados dois serviços com valor acrescentado para serem incluídos no projecto VLCLighting, a proposta DLL pretende fornecer os meios necessários á fragmentação e encaminhamento das exigências dos serviços, enquanto se mantêm um fluxo contínuo de transmissão capaz de assegurar as funcionalidades de iluminação e comunicação. A presente dissertação propõe um desenho inspirado nos sistemas DVB e do projeto OMEGA, e descrevendo as alterações exigidas para satisfazer os objectivos do projecto VLCLighting
    corecore