241 research outputs found

    Binary Classifier Calibration using an Ensemble of Near Isotonic Regression Models

    Full text link
    Learning accurate probabilistic models from data is crucial in many practical tasks in data mining. In this paper we present a new non-parametric calibration method called \textit{ensemble of near isotonic regression} (ENIR). The method can be considered as an extension of BBQ, a recently proposed calibration method, as well as the commonly used calibration method based on isotonic regression. ENIR is designed to address the key limitation of isotonic regression which is the monotonicity assumption of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to obtain calibrated probabilities. Thus it can be combined with many existing classification models. We demonstrate the performance of ENIR on synthetic and real datasets for the commonly used binary classification models. Experimental results show that the method outperforms several common binary classifier calibration methods. In particular on the real data, ENIR commonly performs statistically significantly better than the other methods, and never worse. It is able to improve the calibration power of classifiers, while retaining their discrimination power. The method is also computationally tractable for large scale datasets, as it is O(NlogN)O(N \log N) time, where NN is the number of samples

    Soft margin estimation for automatic speech recognition

    Get PDF
    In this study, a new discriminative learning framework, called soft margin estimation (SME), is proposed for estimating the parameters of continuous density hidden Markov models (HMMs). The proposed method makes direct use of the successful ideas of margin in support vector machines to improve generalization capability and decision feedback learning in discriminative training to enhance model separation in classifier design. SME directly maximizes the separation of competing models to enhance the testing samples to approach a correct decision if the deviation from training samples is within a safe margin. Frame and utterance selections are integrated into a unified framework to select the training utterances and frames critical for discriminating competing models. SME offers a flexible and rigorous framework to facilitate the incorporation of new margin-based optimization criteria into HMMs training. The choice of various loss functions is illustrated and different kinds of separation measures are defined under a unified SME framework. SME is also shown to be able to jointly optimize feature extraction and HMMs. Both the generalized probabilistic descent algorithm and the Extended Baum-Welch algorithm are applied to solve SME. SME has demonstrated its great advantage over other discriminative training methods in several speech recognition tasks. Tested on the TIDIGITS digit recognition task, the proposed SME approach achieves a string accuracy of 99.61%, the best result ever reported in literature. On the 5k-word Wall Street Journal task, SME reduced the word error rate (WER) from 5.06% of MLE models to 3.81%, with relative 25% WER reduction. This is the first attempt to show the effectiveness of margin-based acoustic modeling for large vocabulary continuous speech recognition in a HMMs framework. The generalization of SME was also well demonstrated on the Aurora 2 robust speech recognition task, with around 30% relative WER reduction from the clean-trained baseline.Ph.D.Committee Chair: Dr. Chin-Hui Lee; Committee Member: Dr. Anthony Joseph Yezzi; Committee Member: Dr. Biing-Hwang (Fred) Juang; Committee Member: Dr. Mark Clements; Committee Member: Dr. Ming Yua

    Generalized multi-stream hidden Markov models.

    Get PDF
    For complex classification systems, data is usually gathered from multiple sources of information that have varying degree of reliability. In fact, assuming that the different sources have the same relevance in describing all the data might lead to an erroneous behavior. The classification error accumulates and can be more severe for temporal data where each sample is represented by a sequence of observations. Thus, there is compelling evidence that learning algorithms should include a relevance weight for each source of information (stream) as a parameter that needs to be learned. In this dissertation, we assumed that the multi-stream temporal data is generated by independent and synchronous streams. Using this assumption, we develop, implement, and test multi- stream continuous and discrete hidden Markov model (HMM) algorithms. For the discrete case, we propose two new approaches to generalize the baseline discrete HMM. The first one combines unsupervised learning, feature discrimination, standard discrete HMMs and weighted distances to learn the codebook with feature-dependent weights for each symbol. The second approach consists of modifying the HMM structure to include stream relevance weights, generalizing the standard discrete Baum-Welch learning algorithm, and deriving the necessary conditions to optimize all model parameters simultaneously. We also generalize the minimum classification error (MCE) discriminative training algorithm to include stream relevance weights. For the continuous HMM, we introduce a. new approach that integrates the stream relevance weights in the objective function. Our approach is based on the linearization of the probability density function. Two variations are proposed: the mixture and state level variations. As in the discrete case, we generalize the continuous Baum-Welch learning algorithm to accommodate these changes, and we derive the necessary conditions for updating the model parameters. We also generalize the MCE learning algorithm to derive the necessary conditions for the model parameters\u27 update. The proposed discrete and continuous HMM are tested on synthetic data sets. They are also validated on various applications including Australian Sign Language, audio classification, face classification, and more extensively on the problem of landmine detection using ground penetrating radar data. For all applications, we show that considerable improvement can be achieved compared to the baseline HMM and the existing multi-stream HMM algorithms

    Support Vector Machines for Speech Recognition

    Get PDF
    Hidden Markov models (HMM) with Gaussian mixture observation densities are the dominant approach in speech recognition. These systems typically use a representational model for acoustic modeling which can often be prone to overfitting and does not translate to improved discrimination. We propose a new paradigm centered on principles of structural risk minimization using a discriminative framework for speech recognition based on support vector machines (SVMs). SVMs have the ability to simultaneously optimize the representational and discriminative ability of the acoustic classifiers. We have developed the first SVM-based large vocabulary speech recognition system that improves performance over traditional HMM-based systems. This hybrid system achieves a state-of-the-art word error rate of 10.6% on a continuous alphadigit task ? a 10% improvement relative to an HMM system. On SWITCHBOARD, a large vocabulary task, the system improves performance over a traditional HMM system from 41.6% word error rate to 40.6%. This dissertation discusses several practical issues that arise when SVMs are incorporated into the hybrid system

    Classifier Calibration: A survey on how to assess and improve predicted class probabilities

    Full text link
    This paper provides both an introduction to and a detailed overview of the principles and practice of classifier calibration. A well-calibrated classifier correctly quantifies the level of uncertainty or confidence associated with its instance-wise predictions. This is essential for critical applications, optimal decision making, cost-sensitive classification, and for some types of context change. Calibration research has a rich history which predates the birth of machine learning as an academic field by decades. However, a recent increase in the interest on calibration has led to new methods and the extension from binary to the multiclass setting. The space of options and issues to consider is large, and navigating it requires the right set of concepts and tools. We provide both introductory material and up-to-date technical details of the main concepts and methods, including proper scoring rules and other evaluation metrics, visualisation approaches, a comprehensive account of post-hoc calibration methods for binary and multiclass classification, and several advanced topics

    Large-margin Gaussian mixture modeling for automatic speech recognition

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 101-103).Discriminative training for acoustic models has been widely studied to improve the performance of automatic speech recognition systems. To enhance the generalization ability of discriminatively trained models, a large-margin training framework has recently been proposed. This work investigates large-margin training in detail, integrates the training with more flexible classifier structures such as hierarchical classifiers and committee-based classifiers, and compares the performance of the proposed modeling scheme with existing discriminative methods such as minimum classification error (MCE) training. Experiments are performed on a standard phonetic classification task and a large vocabulary speech recognition (LVCSR) task. In the phonetic classification experiments, the proposed modeling scheme yields about 1.5% absolute error reduction over the current state of the art. In the LVCSR experiments on the MIT lecture corpus, the large-margin model has about 6.0% absolute word error rate reduction over the baseline model and about 0.6% absolute error rate reduction over the MCE model.by Hung-An Chang.S.M

    Modifed Minimum Classification Error Learning and Its Application to Neural Networks

    Get PDF
    A novel method to improve the generalization performance of the Minimum Classification Error (MCE) / Generalized Probabilistic Descent (GPD) learning is proposed. The MCE/GPD learning proposed by Juang and Katagiri in 1992 results in better recognition performance than the maximum-likelihood (ML) based learning in various areas of pattern recognition. Despite its superiority in recognition performance, as well as other learning algorithms, it still suffers from the problem of "over-fitting" to the training samples. In the present study, a regularization technique has been employed to the MCE learning to overcome this problem. Feed-forward neural networks are employed as a recognition platform to evaluate the recognition performance of the proposed method. Recognition experiments are conducted on several sorts of data sets
    corecore