30,981 research outputs found

    Languages of Quantum Information Theory

    Full text link
    This note will introduce some notation and definitions for information theoretic quantities in the context of quantum systems, such as (conditional) entropy and (conditional) mutual information. We will employ the natural C*-algebra formalism, and it turns out that one has an allover dualism of language: we can define everything for (compatible) observables, but also for (compatible) C*-subalgebras. The two approaches are unified in the formalism of quantum operations, and they are connected by a very satisfying inequality, generalizing the well known Holevo bound. Then we turn to communication via (discrete memoryless) quantum channels: we formulate the Fano inequality, bound the capacity region of quantum multiway channels, and comment on the quantum broadcast channel.Comment: 16 pages, REVTEX, typos corrected, references added and extende

    Two-message quantum interactive proofs and the quantum separability problem

    Full text link
    Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.Comment: 34 pages, 6 figures; v2: technical improvements and new result for the multipartite quantum separability problem; v3: minor changes to address referee comments, accepted for presentation at the 2013 IEEE Conference on Computational Complexity; v4: changed problem names; v5: updated references and added a paragraph to the conclusion to connect with prior work on separability testin

    Spatial mode storage in a gradient echo memory

    Full text link
    Three-level atomic gradient echo memory (lambda-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing. In this paper we investigate the spatial multimode properties of a lambda-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapour and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.Comment: 11 pages, 9 figure

    Monodromy analysis of the computational power of the Ising topological quantum computer

    Full text link
    We show that all quantum gates which could be implemented by braiding of Ising anyons in the Ising topological quantum computer preserve the n-qubit Pauli group. Analyzing the structure of the Pauli group's centralizer, also known as the Clifford group, for n\geq 3 qubits, we prove that the image of the braid group is a non-trivial subgroup of the Clifford group and therefore not all Clifford gates could be implemented by braiding. We show explicitly the Clifford gates which cannot be realized by braiding estimating in this way the ultimate computational power of the Ising topological quantum computer.Comment: 10 pages, 2 figures and 1 table; v2: one more reference added and some typos corrected; Talk given at the VIII International Workshop "Lie Theory and its Applications in Physics", 15-21 June 2009, Varna, Bulgari
    • …
    corecore