46 research outputs found

    Resource scheduling for TH-precoding adoption on multi-beam satellite downlink signals

    Full text link

    Technology Assessment for the Future Aeronautical Communications System

    Get PDF
    To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications

    Intelligent genetic algorithms for next-generation broadband multi-carrier CDMA wireless networks

    Get PDF
    This dissertation proposes a novel intelligent system architecture for next-generation broadband multi-carrier CDMA wireless networks. In our system, two novel and similar intelligent genetic algorithms, namely Minimum Distance guided GAs (MDGAs) are invented for both peak-to-average power ratio (PAPR) reduction at the transmitter side and multi-user detection (MUD) at the receiver side. Meanwhile, we derive a theoretical BER performance analysis for the proposed MC-CDMA system in A WGN channel. Our analytical results show that the theoretical BER performance of synchronized MC-CDMA system is the same as that of the synchronized DS-CDMA system which is also used as a theoretical guidance of our novel MUD receiver design. In contrast to traditional GAs, our MDGAs start with a balanced ratio of exploration and exploitation which is maintained throughout the process. In our algorithms, a new replacement strategy is designed which increases significantly the convergence rate and reduces dramatically computational complexity as compared to the conventional GAs. The simulation results demonstrate that, if compared to those schemes using exhaustive search and traditional GAs, (1) our MDGA-based P APR reduction scheme achieves 99.52% and 50+% reductions in computational complexity, respectively; (2) our MDGA-based MUD scheme achieves 99.54% and 50+% reductions in computational complexity, respectively. The use of one core MDGA solution for both issues can ease the hardware design and dramatically reduce the implementation cost in practice.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    TΓ©cnicas de equalização iterativas no espaΓ§o-frequΓͺncia para o LTE

    Get PDF
    Mestrado em Engenharia ElectrΓ³nica e TelecomunicaçáesMobile communications had a huge leap on its evolution in the last decade due to the constant increase of the user requirements. The Long Term Evolution is the new technology developed to give proper answer to the needs of a growing mobile communications community, offering much higher data rates, better spectral efficiency and lower latency when compared to previous technologies, along with scalable bandwidth, interoperability and easy roaming. All these advantages are possible due to the implementation of new network architectures like the E-UTRAN access network and the EPC core network, the use of MIMO systems, and new multiple access schemes: OFDMA for downlink and SC-FDMA for uplink. This thesis focuses on the uplink communication of this technology with SC-FDMA, specifically on the use of Iterative Block Decision Feedback Equalizers (IB-DFE) where both the feedback and the feedforward equalizer matrices are applied on the frequency domain. Two IB-DFE schemes were implemented using both Parallel Interference Cancellation (PIC) and Serial Interference Cancellation (SIC) based processing. We considered the uplink scenario where some users share the same physical channel to transmit its own information to the Base Station (BS). Also, we consider that the BS is equipped with multiple antennas and the user terminals (UT) with a single antenna. The aim of the studied iterative schemes is to efficiently remove both the multi-user and inter-carrier interferences, while allowing a close-to-optimum space-diversity gain. The results obtained showed that both PIC and SIC implementations presented better performance than the conventional used linear multi-user sub optimal equalizers ZF and MMSE. Both solutions efficiently eliminate the multi-user interference, although the SIC based scheme slightly outperforms the PIC approach, with a performance close to the one achieved by the Matched Filter Bound (MFB).As comunicaçáes mΓ³veis tiveram um grande avanΓ§o na sua evolução na ΓΊltima dΓ©cada devido ao constante aumento dos requisitos dos utilizadores. O Long Term Evolution Γ© a nova tecnologia desenvolvida para dar resposta Γ s necessidades de uma crescente comunidade de comunicaçáes mΓ³veis, oferecendo taxas de transmissΓ£o de dados muito mais elevadas, melhor eficiΓͺncia espectral e menor latΓͺncia quando comparado a tecnologias anteriores, incluindo tambΓ©m largura de banda escalΓ‘vel, interoperabilidade e roaming simples. Todas estas vantagens sΓ£o possΓ­veis devido Γ  implementação de novas arquiteturas de rede, como a rede de acesso E-UTRAN e a rede core EPC, o uso de sistemas MIMO, e novos esquemas de mΓΊltiplo acesso: OFDMA para o downlink e SC-FDMA para o uplink. Esta tese centra-se na comunicação no sentido ascendente desta tecnologia onde o esquema utilizado Γ© o SC-FDMA, mais especificamente na aplicação de Iterative Block Decision Feedback Equalizers (IB-DFE) onde tanto a matriz de feedback como a de feedfoward do equalizador sΓ£o aplicadas no domΓ­nio da frequΓͺncia. Dois esquemas IB-DFE foram implementados utilizando processamento baseado em cancelamento de interferΓͺncia em paralelo (PIC) e em serie (SIC). Foi considerado um cenΓ‘rio ascendente onde alguns utilizadores (UEs) partilham o mesmo canal fΓ­sico para transmitir a sua informação para a Estação Base (BS). È tambΓ©m assumido que a BS estΓ‘ equipada com mΓΊltiplas antenas, e os terminais dos utilizadores com uma antena apenas. O objetivo dos esquemas iterativos estudados Γ© remover eficientemente a interferΓͺncia entre utilizadores e entre portadoras, permitindo entretanto um ganho de diversidade no espaΓ§o quase Γ³timo. Os resultados obtidos mostraram que tanto a implementação PIC como a SIC apresentam melhor eficiΓͺncia do que os habituais equalizadores lineares sub Γ³timos ZF e MMSE. Ambas as soluçáes eliminam a interferΓͺncia entre utilizadores, embora o esquema SIC apresente um melhor desempenho que o PIC, aproximando- se do atingido com o Matched Filter Bound (MFB)

    Wireless communications in the new millennium and third generation wireless networks

    Get PDF
    At the end of the 20 century, and at the beginning of this one, wireless communications are making large advances. The new technologies are on the way to provide a high-speed, high-quality information exchange between handheld terminals, and information repositories. The so called 2,5 generation networks, using the techniques like the HSCSD1, GPRS2, EDGE3, and the 3r generation wireless systems will help the wireless world to reach those goals. In this thesis I will start from the first and second-generation wireless networks, and then look into the 2,5 generation and 3rd generation wireless communications more in detail. The latest advances in the wireless world are the main focus of this paper although a short history of wireless communications is also given. The various aspects related to 3rd generation systems will be explored in this thesis, for example the air interface discussions, its time scale, its elements like the mobile equipment, software and security, USLM4, services that will be offered, etc. In addition, the technical factors and key technologies that are likely to shape the wireless network environment of the future will be explored. This part is expected to help us to see beyond the 3rd generation

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    corecore