649 research outputs found

    Implementation of a Neuromorphic Development Platform with DANNA

    Get PDF
    Neuromorphic computing is the use of artificial neural networks to solve complex problems. The specialized computing field has been growing in interest during the past few years. Specialized hardware that function as neural networks can be utilized to solve specific problems unsuited for traditional computing architectures such as pattern classification and image recognition. However, these hardware platforms have neural network structures that are static, being limited to only perform a specific application, and cannot be used for other tasks. In this paper, the feasibility of a development platform utilizing a dynamic artificial neural network for researchers is discussed

    Achieving Functional Correctness in Large Interconnect Systems.

    Full text link
    In today's semi-conductor industry, large chip-multiprocessors and systems-on-chip are being developed, integrating a large number of components on a single chip. The sheer size of these designs and the intricacy of the communication patterns they exhibit have propelled the development of network-on-chip (NoC) interconnects as the basis for the communication infrastructure in these systems. Faced with the interconnect's growing size and complexity, several challenges hinder its effective validation. During the interconnect's development, the functional verification process relies heavily on the use of emulation and post-silicon validation platforms. However, detecting and debugging errors on these platforms is a difficult endeavour due to the limited observability, and in turn the low verification capabilities, they provide. Additionally, with the inherent incompleteness of design-time validation efforts, the potential of design bugs escaping into the interconnect of a released product is also a concern, as these bugs can threaten the viability of the entire system. This dissertation provides solutions to enable the development of functionally correct interconnect designs. We first address the challenges encountered during design-time verification efforts, by providing two complementary mechanisms that allow emulation and post-silicon verification frameworks to capture a detailed overview of the functional behaviour of the interconnect. Our first solution re-purposes the contents of in-flight traffic to log debug data from the interconnect's execution. This approach enables the validation of the interconnect using synthetic traffic workloads, while attaining over 80% observability of the routes followed by packets and capturing valuable debugging information. We also develop an alternative mechanism that boosts observability by taking periodic snapshots of execution, thus extending the verification capabilities to run both synthetic traffic and real-application workloads. The collected snapshots enhance detection and debugging support, and they provide observability of over 50% of packets and reconstructs at least half of each of their routes. Moreover, we also develop error detection and recovery solutions to address the threat of design bugs escaping into the interconnect's runtime operation. Our runtime techniques can overcome communication errors without needing to store replicate copies of all in-flight packets, thereby achieving correctness at minimal area costsPhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116741/1/rawanak_1.pd

    Software-based and regionally-oriented traffic management in Networks-on-Chip

    Get PDF
    Since the introduction of chip-multiprocessor systems, the number of integrated cores has been steady growing and workload applications have been adapted to exploit the increasing parallelism. This changed the importance of efficient on-chip communication significantly and the infrastructure has to keep step with these new requirements. The work at hand makes significant contributions to the state-of-the-art of the latest generation of such solutions, called Networks-on-Chip, to improve the performance, reliability, and flexible management of these on-chip infrastructures

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Solar Irradiance Forecasting and Implications for Domestic Electric Water Heating

    Get PDF
    As the effects of burning fossil fuels continues to present its prevalence, the interests in alternative forms of energy is expanding. Within the home, the domestic electrical water heater accounts for approximately 17% of its energy consumption. Reducing the amount of energy required to produce hot water from this thermal system alone can have a significant effect on reducing its carbon footprint. In this presented work, a modeled domestic electrical water heater was supplied photovoltaic and on-grid electrical power to increase its energy efficiency. As photovoltaic (PV) energy is directly related to solar irradiation, it is important to receive accurate solar irradiance data for the area and to forecast future solar irradiance outputs to determine optimal energy input. A Kipp & Zonen solar tracker, capable of Baseline Surface Radiation Network (BSRN) level data collection, was installed on Georgia Southern University’s campus to determine extremely accurate solar irradiance. Future irradiance data based on the historical data was then predicted by using artificial neural network (ANN) methods and those results were used to determine future PV output. The system was evaluated strictly by modeling the PV system and domestic electric water heater (DEWH), and then the PV system was integrated into the operation of the DEWH. In comparison to the typical operation of the DEWH, a PV inclusive DEWH produced a significant decrease in the on-grid energy dependency of the entire system

    Improving prefetching mechanisms for tiled CMP platforms

    Get PDF
    Recently, high performance processor designs have evolved toward Chip-Multiprocessor (CMP) architectures to deal with instruction level parallelism limitations and, more important, to manage the power consumption that is becoming unaffordable due to the increased transistor count and clock frequency. At the present moment, this architecture, which implements multiple processing cores on a single die, is commercially available with up to twenty four processors on a single chip and there are roadmaps and research trends that suggest that number of cores will increase in the near future. The increasing on number of cores has converted the interconnection network in a key issue that will have significant impact on performance. Moreover, as the number of cores increases, tiled architectures are foreseen to provide a scalable solution to handle design complexity. Network-on-Chip (NoC) emerges as a solution to deal with growing on-chip wire delays. On the other hand, CMP designs are likely to be equipped with latency hiding techniques like prefetching in order to reduce the negative impact on performance that, otherwise, high cache miss rates would lead to. Unfortunately, the extra number of network messages that prefetching entails can drastically increase power consumption and the latency in the NoC. In this thesis, we do not develop a new prefetching technique for CMPs but propose improvements applicable to any of them. Specifically, we analyze the behavior of the prefetching in the CMPs and its impact to the interconnect. We propose several dynamic management techniques to improve the performance of the prefetching mechanism in the system. Furthermore, we identify the main problems when implementing prefetching in distributed memory systems like tiled architectures and propose directions to solve them. Finally, we propose several research lines to continue the work done in this thesis.Recentment l'arquitectura dels processadors d'altes prestacions ha evolucionat cap a processadors amb diversos nuclis per a concordar amb les limitacions del paral·lelisme a nivell d'instrucció i, mes important encara, per tractar el consum d'energia que ha esdevingut insostenible degut a l'increment de transistors i la freqüència de rellotge. Ara mateix, aquestes arquitectures, que implementes varis nuclis en un sol xip, estan a la venta amb mes de vint-i-quatre processadors en un sol xip i hi ha previsions que suggereixen que aquest nombre de nuclis creixerà en un futur pròxim. Aquest increment del nombre de nuclis, ha convertit la xarxa que els connecta en un punt clau que tindrà un impacte important en el seu rendiment. Una topologia de xarxa que sembla que serà capaç de proveir una solució escalable per aquestes arquitectures ha estat la topologia tile. Les xarxes en el xip (NoC) es presenten com la solució del increment de la latència dels cables del xip. Per altre banda, els dissenys de multiprocessadors seguiran disposant de tècniques de reducció de latència de memòria com el prefetch per tal de reduir l'impacte negatiu en rendiment que, altrament, tindríem degut als elevats temps de latència en fallades a memòria cache. Desafortunadament, el gran nombre de peticions destinades a prefetch, pot augmentar dràsticament la congestió a la xarxa i el consum d'energia. En aquesta tesi, no desenvolupem cap tècnica nova de prefetching, però proposem millores aplicables a qualsevol d'ells. Concretament analitzem el comportament del prefetching en multiprocessadors i el seu impacte a la xarxa. Proposem diverses tècniques de control dinàmic per millor el rendiment del prefetcher al sistema. A més, identifiquem els problemes principals d'implementar el prefetching en els sistemes de memòria distribuïts com els de les arquitectures tile i proposem línies d'investigació per solucionar-los. Finalment, també proposem diverses línies d'investigació per continuar amb el treball fet en aquesta tesi.Postprint (published version

    An integrated soft- and hard-programmable multithreaded architecture

    Get PDF
    corecore