119 research outputs found

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable

    Sublinearly space bounded iterative arrays

    Get PDF
    Iterative arrays (IAs) are a, parallel computational model with a sequential processing of the input. They are one-dimensional arrays of interacting identical deterministic finite automata. In this note, realtime-lAs with sublinear space bounds are used to accept formal languages. The existence of a proper hierarchy of space complexity classes between logarithmic anel linear space bounds is proved. Furthermore, an optimal spacc lower bound for non-regular language recognition is shown. Key words: Iterative arrays, cellular automata, space bounded computations, decidability questions, formal languages, theory of computatio

    On two-way communication in cellular automata with a fixed number of cells

    Get PDF
    The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k

    On one-way cellular automata with a fixed number of cells

    Get PDF
    We investigate a restricted one-way cellular automaton (OCA) model where the number of cells is bounded by a constant number k, so-called kC-OCAs. In contrast to the general model, the generative capacity of the restricted model is reduced to the set of regular languages. A kC-OCA can be algorithmically converted to a deterministic finite automaton (DFA). The blow-up in the number of states is bounded by a polynomial of degree k. We can exhibit a family of unary languages which shows that this upper bound is tight in order of magnitude. We then study upper and lower bounds for the trade-off when converting DFAs to kC-OCAs. We show that there are regular languages where the use of kC-OCAs cannot reduce the number of states when compared to DFAs. We then investigate trade-offs between kC-OCAs with different numbers of cells and finally treat the problem of minimizing a given kC-OCA

    Minimizing finite automata is computationally hard

    Get PDF
    It is known that deterministic finite automata (DFAs) can be algorithmically minimized, i.e., a DFA M can be converted to an equivalent DFA M' which has a minimal number of states. The minimization can be done efficiently [6]. On the other hand, it is known that unambiguous finite automata (UFAs) and nondeterministic finite automata (NFAs) can be algorithmically minimized too, but their minimization problems turn out to be NP-complete and PSPACE-complete [8]. In this paper, the time complexity of the minimization problem for two restricted types of finite automata is investigated. These automata are nearly deterministic, since they only allow a small amount of non determinism to be used. On the one hand, NFAs with a fixed finite branching are studied, i.e., the number of nondeterministic moves within every accepting computation is bounded by a fixed finite number. On the other hand, finite automata are investigated which are essentially deterministic except that there is a fixed number of different initial states which can be chosen nondeterministically. The main result is that the minimization problems for these models are computationally hard, namely NP-complete. Hence, even the slightest extension of the deterministic model towards a nondeterministic one, e.g., allowing at most one nondeterministic move in every accepting computation or allowing two initial states instead of one, results in computationally intractable minimization problems

    Merkityn kaksoisnegaation sovellukset

    Get PDF
    Nested complementation plays an important role in expressing counter- i.e. star-free and first-order definable languages and their hierarchies. In addition, methods that compile phonological rules into finite-state networks use double-nested complementation or "double negation". This paper reviews how the double-nested complementation extends to a relatively new operation, generalized restriction (GR), coined by the author. ... The paper demonstrates that the GR operation has an interesting potential in expressing regular languages, various kinds of grammars, bimorphisms and relations. This motivates a further study of optimized implementation of the operation.Non peer reviewe

    Students´ language in computer-assisted tutoring of mathematical proofs

    Get PDF
    Truth and proof are central to mathematics. Proving (or disproving) seemingly simple statements often turns out to be one of the hardest mathematical tasks. Yet, doing proofs is rarely taught in the classroom. Studies on cognitive difficulties in learning to do proofs have shown that pupils and students not only often do not understand or cannot apply basic formal reasoning techniques and do not know how to use formal mathematical language, but, at a far more fundamental level, they also do not understand what it means to prove a statement or even do not see the purpose of proof at all. Since insight into the importance of proof and doing proofs as such cannot be learnt other than by practice, learning support through individualised tutoring is in demand. This volume presents a part of an interdisciplinary project, set at the intersection of pedagogical science, artificial intelligence, and (computational) linguistics, which investigated issues involved in provisioning computer-based tutoring of mathematical proofs through dialogue in natural language. The ultimate goal in this context, addressing the above-mentioned need for learning support, is to build intelligent automated tutoring systems for mathematical proofs. The research presented here has been focused on the language that students use while interacting with such a system: its linguistic propeties and computational modelling. Contribution is made at three levels: first, an analysis of language phenomena found in students´ input to a (simulated) proof tutoring system is conducted and the variety of students´ verbalisations is quantitatively assessed, second, a general computational processing strategy for informal mathematical language and methods of modelling prominent language phenomena are proposed, and third, the prospects for natural language as an input modality for proof tutoring systems is evaluated based on collected corpora

    Research in the Language, Information and Computation Laboratory of the University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLiFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. Naturally, this introduction cannot spell out all the connections between these abstracts; we invite you to explore them on your own. In fact, with this issue it’s easier than ever to do so: this document is accessible on the “information superhighway”. Just call up http://www.cis.upenn.edu/~cliff-group/94/cliffnotes.html In addition, you can find many of the papers referenced in the CLiFF Notes on the net. Most can be obtained by following links from the authors’ abstracts in the web version of this report. The abstracts describe the researchers’ many areas of investigation, explain their shared concerns, and present some interesting work in Cognitive Science. We hope its new online format makes the CLiFF Notes a more useful and interesting guide to Computational Linguistics activity at Penn

    CLiFF Notes: Research in the Language Information and Computation Laboratory of The University of Pennsylvania

    Get PDF
    This report takes its name from the Computational Linguistics Feedback Forum (CLIFF), an informal discussion group for students and faculty. However the scope of the research covered in this report is broader than the title might suggest; this is the yearly report of the LINC Lab, the Language, Information and Computation Laboratory of the University of Pennsylvania. It may at first be hard to see the threads that bind together the work presented here, work by faculty, graduate students and postdocs in the Computer Science, Psychology, and Linguistics Departments, and the Institute for Research in Cognitive Science. It includes prototypical Natural Language fields such as: Combinatorial Categorial Grammars, Tree Adjoining Grammars, syntactic parsing and the syntax-semantics interface; but it extends to statistical methods, plan inference, instruction understanding, intonation, causal reasoning, free word order languages, geometric reasoning, medical informatics, connectionism, and language acquisition. With 48 individual contributors and six projects represented, this is the largest LINC Lab collection to date, and the most diverse
    • …
    corecore