335 research outputs found

    Robust Sound Event Classification using Deep Neural Networks

    Get PDF
    The automatic recognition of sound events by computers is an important aspect of emerging applications such as automated surveillance, machine hearing and auditory scene understanding. Recent advances in machine learning, as well as in computational models of the human auditory system, have contributed to advances in this increasingly popular research field. Robust sound event classification, the ability to recognise sounds under real-world noisy conditions, is an especially challenging task. Classification methods translated from the speech recognition domain, using features such as mel-frequency cepstral coefficients, have been shown to perform reasonably well for the sound event classification task, although spectrogram-based or auditory image analysis techniques reportedly achieve superior performance in noise. This paper outlines a sound event classification framework that compares auditory image front end features with spectrogram image-based front end features, using support vector machine and deep neural network classifiers. Performance is evaluated on a standard robust classification task in different levels of corrupting noise, and with several system enhancements, and shown to compare very well with current state-of-the-art classification techniques

    Towards A Robust Arabic Speech Recognition System Based On Reservoir Computing

    Get PDF
    In this thesis we investigate the potential of developing a speech recognition system based on a recently introduced artificial neural network (ANN) technique, namely Reservoir Computing (RC). This technique has, in theory, a higher capability for modelling dynamic behaviour compared to feed-forward ANNs due to the recurrent connections between the nodes in the reservoir layer, which serves as a memory. We conduct this study on the Arabic language, (one of the most spoken languages in the world and the official language in 26 countries), because there is a serious gap in the literature on speech recognition systems for Arabic, making the potential impact high. The investigation covers a variety of tasks, including the implementation of the first reservoir-based Arabic speech recognition system. In addition, a thorough evaluation of the developed system is conducted including several comparisons to other state- of-the-art models found in the literature, and baseline models. The impact of feature extraction methods are studied in this work, and a new biologically inspired feature extraction technique, namely the Auditory Nerve feature, is applied to the speech recognition domain. Comparing different feature extraction methods requires access to the original recorded sound, which is not possible in the only publicly accessible Arabic corpus. We have developed the largest public Arabic corpus for isolated words, which contains roughly 10,000 samples. Our investigation has led us to develop two novel approaches based on reservoir computing, ESNSVMs (Echo State Networks with Support Vector Machines) and ESNEKMs (Echo State Networks with Extreme Kernel Machines). These aim to improve the performance of the conventional RC approach by proposing different readout architectures. These two approaches have been compared to the conventional RC approach and other state-of-the- art systems. Finally, these developed approaches have been evaluated on the presence of different types and levels of noise to examine their resilience to noise, which is crucial for real world applications

    Circuit paradigm in the 21

    Get PDF
    reviewe

    Impact Of Semantics, Physics And Adversarial Mechanisms In Deep Learning

    Get PDF
    Deep learning has greatly advanced the performance of algorithms on tasks such as image classification, speech enhancement, sound separation, and generative image models. However many current popular systems are driven by empirical rules that do not fully exploit the underlying physics of the data. Many speech and audio systems fix STFT preprocessing before their networks. Hyperspectral Image (HSI) methods often don't deliberately consider the spectral spatial trade off that is not present in normal images. Generative Adversarial Networks (GANs) that learn a generative distribution of images don't prioritize semantic labels of the training data. To meet these opportunities we propose to alter known deep learning methods to be more dependent on the semantic and physical underpinnings of the data to create better performing and more robust algorithms for sound separation and classification, image generation, and HSI segmentation. Our approaches take inspiration from from Harmonic Analysis, SVMs, and classical statistical detection theory, and further the state-of-the art in source separation, defense against audio adversarial attacks, HSI classification, and GANs. Recent deep learning approaches have achieved impressive performance on speech enhancement and separation tasks. However, these approaches have not been investigated for separating mixtures of arbitrary sounds of different types, a task we refer to as universal sound separation. To study this question, we develop a dataset of mixtures containing arbitrary sounds, and use it to investigate the space of mask-based separation architectures, varying both the overall network architecture and the framewise analysis-synthesis basis for signal transformations. We compare using a short-time Fourier transform (STFT) with a learnable basis at variable window sizes for the feature extraction stage of our sound separation network. We also compare the robustness to adversarial examples of speech classification networks that similarly hybridize established Time-frequency (TF) methods with learnable filter weights. We analyze HSI images for material classification. For hyperspectral image cubes TF methods decompose spectra into multi-spectral bands, while Neural Networks (NNs) incorporate spatial information across scales and model multiple levels of dependencies between spectral features. The Fourier scattering transform is an amalgamation of time-frequency representations with neural network architectures. We propose and test a three dimensional Fourier scattering method on hyperspectral datasets, and present results that indicate that the Fourier scattering transform is highly effective at representing spectral data when compared with other state-of-the-art methods. We study the spectral-spatial trade-off that our Scattering approach allows.We also use a similar multi-scale approach to develop a defense against audio adversarial attacks. We propose a unification of a computational model of speech processing in the brain with commercial wake-word networks to create a cortical network, and show that it can increase resistance to adversarial noise without a degradation in performance. Generative Adversarial Networks are an attractive approach to constructing generative models that mimic a target distribution, and typically use conditional information (cGANs) such as class labels to guide the training of the discriminator and the generator. We propose a loss that ensures generator updates are always class specific, rather than training a function that measures the information theoretic distance between the generative distribution and one target distribution, we generalize the successful hinge-loss that has become an essential ingredient of many GANs to the multi-class setting and use it to train a single generator classifier pair. While the canonical hinge loss made generator updates according to a class agnostic margin a real/fake discriminator learned, our multi-class hinge-loss GAN updates the generator according to many classification margins. With this modification, we are able to accelerate training and achieve state of the art Inception and FID scores on Imagenet128. We study the trade-off between class fidelity and overall diversity of generated images, and show modifications of our method can prioritize either each during training. We show that there is a limit to how closely classification and discrimination can be combined while maintaining sample diversity with some theoretical results on K+1 GANs

    Bio-motivated features and deep learning for robust speech recognition

    Get PDF
    Mención Internacional en el título de doctorIn spite of the enormous leap forward that the Automatic Speech Recognition (ASR) technologies has experienced over the last five years their performance under hard environmental condition is still far from that of humans preventing their adoption in several real applications. In this thesis the challenge of robustness of modern automatic speech recognition systems is addressed following two main research lines. The first one focuses on modeling the human auditory system to improve the robustness of the feature extraction stage yielding to novel auditory motivated features. Two main contributions are produced. On the one hand, a model of the masking behaviour of the Human Auditory System (HAS) is introduced, based on the non-linear filtering of a speech spectro-temporal representation applied simultaneously to both frequency and time domains. This filtering is accomplished by using image processing techniques, in particular mathematical morphology operations with an specifically designed Structuring Element (SE) that closely resembles the masking phenomena that take place in the cochlea. On the other hand, the temporal patterns of auditory-nerve firings are modeled. Most conventional acoustic features are based on short-time energy per frequency band discarding the information contained in the temporal patterns. Our contribution is the design of several types of feature extraction schemes based on the synchrony effect of auditory-nerve activity, showing that the modeling of this effect can indeed improve speech recognition accuracy in the presence of additive noise. Both models are further integrated into the well known Power Normalized Cepstral Coefficients (PNCC). The second research line addresses the problem of robustness in noisy environments by means of the use of Deep Neural Networks (DNNs)-based acoustic modeling and, in particular, of Convolutional Neural Networks (CNNs) architectures. A deep residual network scheme is proposed and adapted for our purposes, allowing Residual Networks (ResNets), originally intended for image processing tasks, to be used in speech recognition where the network input is small in comparison with usual image dimensions. We have observed that ResNets on their own already enhance the robustness of the whole system against noisy conditions. Moreover, our experiments demonstrate that their combination with the auditory motivated features devised in this thesis provide significant improvements in recognition accuracy in comparison to other state-of-the-art CNN-based ASR systems under mismatched conditions, while maintaining the performance in matched scenarios. The proposed methods have been thoroughly tested and compared with other state-of-the-art proposals for a variety of datasets and conditions. The obtained results prove that our methods outperform other state-of-the-art approaches and reveal that they are suitable for practical applications, specially where the operating conditions are unknown.El objetivo de esta tesis se centra en proponer soluciones al problema del reconocimiento de habla robusto; por ello, se han llevado a cabo dos líneas de investigación. En la primera líınea se han propuesto esquemas de extracción de características novedosos, basados en el modelado del comportamiento del sistema auditivo humano, modelando especialmente los fenómenos de enmascaramiento y sincronía. En la segunda, se propone mejorar las tasas de reconocimiento mediante el uso de técnicas de aprendizaje profundo, en conjunto con las características propuestas. Los métodos propuestos tienen como principal objetivo, mejorar la precisión del sistema de reconocimiento cuando las condiciones de operación no son conocidas, aunque el caso contrario también ha sido abordado. En concreto, nuestras principales propuestas son los siguientes: Simular el sistema auditivo humano con el objetivo de mejorar la tasa de reconocimiento en condiciones difíciles, principalmente en situaciones de alto ruido, proponiendo esquemas de extracción de características novedosos. Siguiendo esta dirección, nuestras principales propuestas se detallan a continuación: • Modelar el comportamiento de enmascaramiento del sistema auditivo humano, usando técnicas del procesado de imagen sobre el espectro, en concreto, llevando a cabo el diseño de un filtro morfológico que captura este efecto. • Modelar el efecto de la sincroní que tiene lugar en el nervio auditivo. • La integración de ambos modelos en los conocidos Power Normalized Cepstral Coefficients (PNCC). La aplicación de técnicas de aprendizaje profundo con el objetivo de hacer el sistema más robusto frente al ruido, en particular con el uso de redes neuronales convolucionales profundas, como pueden ser las redes residuales. Por último, la aplicación de las características propuestas en combinación con las redes neuronales profundas, con el objetivo principal de obtener mejoras significativas, cuando las condiciones de entrenamiento y test no coinciden.Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Javier Ferreiros López.- Secretario: Fernando Díaz de María.- Vocal: Rubén Solera Ureñ

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems
    corecore