5,414 research outputs found

    MILE: A Multi-Level Framework for Scalable Graph Embedding

    Full text link
    Recently there has been a surge of interest in designing graph embedding methods. Few, if any, can scale to a large-sized graph with millions of nodes due to both computational complexity and memory requirements. In this paper, we relax this limitation by introducing the MultI-Level Embedding (MILE) framework -- a generic methodology allowing contemporary graph embedding methods to scale to large graphs. MILE repeatedly coarsens the graph into smaller ones using a hybrid matching technique to maintain the backbone structure of the graph. It then applies existing embedding methods on the coarsest graph and refines the embeddings to the original graph through a graph convolution neural network that it learns. The proposed MILE framework is agnostic to the underlying graph embedding techniques and can be applied to many existing graph embedding methods without modifying them. We employ our framework on several popular graph embedding techniques and conduct embedding for real-world graphs. Experimental results on five large-scale datasets demonstrate that MILE significantly boosts the speed (order of magnitude) of graph embedding while generating embeddings of better quality, for the task of node classification. MILE can comfortably scale to a graph with 9 million nodes and 40 million edges, on which existing methods run out of memory or take too long to compute on a modern workstation. Our code and data are publicly available with detailed instructions for adding new base embedding methods: \url{https://github.com/jiongqian/MILE}.Comment: Accepted in ICWSM 202

    Graph Convolutional Neural Networks based on Quantum Vertex Saliency

    Full text link
    This paper proposes a new Quantum Spatial Graph Convolutional Neural Network (QSGCNN) model that can directly learn a classification function for graphs of arbitrary sizes. Unlike state-of-the-art Graph Convolutional Neural Network (GCNN) models, the proposed QSGCNN model incorporates the process of identifying transitive aligned vertices between graphs, and transforms arbitrary sized graphs into fixed-sized aligned vertex grid structures. In order to learn representative graph characteristics, a new quantum spatial graph convolution is proposed and employed to extract multi-scale vertex features, in terms of quantum information propagation between grid vertices of each graph. Since the quantum spatial convolution preserves the grid structures of the input vertices (i.e., the convolution layer does not change the original spatial sequence of vertices), the proposed QSGCNN model allows to directly employ the traditional convolutional neural network architecture to further learn from the global graph topology, providing an end-to-end deep learning architecture that integrates the graph representation and learning in the quantum spatial graph convolution layer and the traditional convolutional layer for graph classifications. We demonstrate the effectiveness of the proposed QSGCNN model in relation to existing state-of-the-art methods. The proposed QSGCNN model addresses the shortcomings of information loss and imprecise information representation arising in existing GCN models associated with the use of SortPooling or SumPooling layers. Experiments on benchmark graph classification datasets demonstrate the effectiveness of the proposed QSGCNN model
    • …
    corecore