59 research outputs found

    Stochastic Game based Cooperative Alternating Q-Learning Caching in Dynamic D2D Networks

    Get PDF
    Edge caching has become an effective solution to cope with the challenges brought by the massive content delivery in cellular networks. In device-to-device (D2D) enabled caching cellular networks with time-varying content popularity distribution and user terminal (UT) location, we model these dynamic networks as a stochastic game to design a cooperative cache placement policy. The cache placement reward of each UT is defined as the caching incentive minus the transmission power cost for content caching and sharing. We consider the long-term cache placement reward of all UTs in this stochastic game. In an effort to solve the stochastic game problem, we propose a multi-agent cooperative alternating Q-learning (CAQL) based cache placement algorithm. The caching control unit is defined to execute the proposed CAQL, in which, the cache placement policy of each UT is alternatively updated according to the stable policy of other UTs during the learning process, until the stable cache placement policy of all the UTs in the cell is obtained. We discuss the convergence and complexity of CAQL, which obtains the stable cache placement policy with low space complexity. Simulation results show that the proposed algorithm can effectively reduce the backhaul load and the average content access delay in dynamic networks

    Joint content placement and storage allocation based on federated learning in F-RANs

    Get PDF
    Funding: This work was supported in part by Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2018jcyjAX0383), the special fund of Chongqing key laboratory (CSTC), and the Funding of CQUPT (A2016-83, GJJY19-2-23, A2020-270).Peer reviewedPublisher PD

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table
    corecore