2,603 research outputs found

    RIS-Enhanced WPCNs: Joint Radio Resource Allocation and Passive Beamforming Optimization

    Get PDF
    Wireless-powered communication and reconfigurable intelligent surface (RIS) can complement each other for increasing energy utilization and spectrum efficiency by reconfiguring the surrounding radio environment, however, which has not been sufficiently studied by the existing works. In this paper, we propose a joint radio resource and passive beamforming optimization scheme for a downlink RIS-assisted wireless-powered communication network with a harvest-then-transmit protocol to improve system energy efficiency (EE). In the considered model, the single-antenna wireless devices (WDs) harvest wireless energy from a multi-antenna dedicated power station (PS) through the RIS in the downlink and transmit their independent information to a single-antenna receiver in the uplink by a time-division-multiple-access mode. Our goal is to maximize the total EE of all WDs. To make full use of the beamforming gain provided by both the PS and the RIS, we jointly optimize the active beamforming of the PS and the passive beamforming of the RIS. To deal with the challenging non-convex optimization problem with multiple coupled variables, we first consider fixing the passive beamforming, and converting the remaining radio resource allocation problem into an equivalent convex problem which is solved by using Lagrange dual theory. Then, we fix the optimized resource allocation parameters and optimize the passive beamforming of the RIS by using a semidefinite programming method. Simulation results demonstrate that the proposed algorithm achieves higher EE compared to the conventional schemes

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Optimization and Analysis of Wireless Powered Multi-antenna Cooperative Systems

    Get PDF
    In this paper, we consider a three-node cooperative wireless powered communication system consisting of a multi-antenna hybrid access point (H-AP) and a single-antenna relay and a single-antenna user. The energy constrained relay and user first harvest energy in the downlink and then the relay assists the user using the harvested power for information transmission in the uplink. The optimal energy beamforming vector and the time split between harvest and cooperation are investigated. To reduce the computational complexity, suboptimal designs are also studied, where closed-form expressions are derived for the energy beamforming vector and the time split. For comparison purposes, we also present a detailed performance analysis in terms of the achievable outage probability and the average throughput of an intuitive energy beamforming scheme, where the H-AP directs all the energy towards the user. The findings of the paper suggest that implementing multiple antennas at the H-AP can significantly improve the system performance, and the closed-form suboptimal energy beamforming vector and time split yields near optimal performance. Also, for the intuitive beamforming scheme, a diversity order of (N+1)/2 can be achieved, where N is the number of antennas at the H-AP
    • …
    corecore