104,956 research outputs found

    Automated Verification of Quantum Protocols using MCMAS

    Full text link
    We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC), an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Event-triggered Synchronization of Multi-agent Systems with Partial Input Saturation

    Get PDF
    This paper is concerned with the distributed event/self-triggered synchronization problem for general linear multi-agent systems with partial input saturation. Both the event-based and self-triggered laws are designed using the local sampled, possibly saturated, state, which ensures the bounded synchronization of the multi-agent systems, and exclusion of the Zeno-behavior. The continuous communication between agents is avoided under these triggering protocols. Different from the existing related works, we show the fully distributed design for multi-agent systems, where the synchronization criteria, the designed input laws, and the proposed triggering protocols do not depend on any global information of the communication topology. In addition, the computation load of multi-agent systems is reduced significantly

    Resource-Aware Junction Trees for Efficient Multi-Agent Coordination

    No full text
    In this paper we address efficient decentralised coordination of cooperative multi-agent systems by taking into account the actual computation and communication capabilities of the agents. We consider coordination problems that can be framed as Distributed Constraint Optimisation Problems, and as such, are suitable to be deployed on large scale multi-agent systems such as sensor networks or multiple unmanned aerial vehicles. Specifically, we focus on techniques that exploit structural independence among agents’ actions to provide optimal solutions to the coordination problem, and, in particular, we use the Generalized Distributive Law (GDL) algorithm. In this settings, we propose a novel resource aware heuristic to build junction trees and to schedule GDL computations across the agents. Our goal is to minimise the total running time of the coordination process, rather than the theoretical complexity of the computation, by explicitly considering the computation and communication capabilities of agents. We evaluate our proposed approach against DPOP, RDPI and a centralized solver on a number of benchmark coordination problems, and show that our approach is able to provide optimal solutions for DCOPs faster than previous approaches. Specifically, in the settings considered, when resources are scarce our approach is up to three times faster than DPOP (which proved to be the best among the competitors in our settings)

    Parallelising multi-agent systems for high performance computing

    Get PDF
    Multi-Agent Systems (MAS) are seen as a promising technology to face the current requirements of large-scale distributed and complex systems, e.g., autonomous traffic systems or risk management. The application of MAS to such large scale systems, characterised by millions of distributed nodes, imposes special demanding requirements in terms of fast computation. The paper discusses the parallelisation of MAS solutions using larger-scale distributed High End Computing platforms as well as High Performance Computing as a suitable approach to handle the complexity associated to collaborative solutions for large-scale systems

    Fully Homomorphic Encryption-enabled Distance-based Distributed Formation Control with Distance Mismatch Estimators

    Get PDF
    This paper considers the use of fully homomorphic encryption for the realisation of distributed formation control of multi-agent systems via edge computer. In our proposed framework, the distributed control computation in the edge computer uses only the encrypted data without the need for a reset mechanism that is commonly required to avoid error accumulation. Simulation results show that, despite the use of encrypted data on the controller and errors introduced by the quantization process prior to the encryption, the formation is able to converge to the desired shape. The proposed architecture offers insight on the mechanism for realising distributed control computation in an edge/cloud computer while preserving the privacy of local information coming from each agent

    MAX-consensus in open multi-agent systems with gossip interactions

    Full text link
    We study the problem of distributed maximum computation in an open multi-agent system, where agents can leave and arrive during the execution of the algorithm. The main challenge comes from the possibility that the agent holding the largest value leaves the system, which changes the value to be computed. The algorithms must as a result be endowed with mechanisms allowing to forget outdated information. The focus is on systems in which interactions are pairwise gossips between randomly selected agents. We consider situations where leaving agents can send a last message, and situations where they cannot. For both cases, we provide algorithms able to eventually compute the maximum of the values held by agents.Comment: To appear in the proceedings of the 56th IEEE Conference on Decision and Control (CDC 17). 8 pages, 3 figure
    • …
    corecore