2,849 research outputs found

    A Reactive Anticipation for Autonomous Robot Navigation

    Get PDF

    Autonomous navigation strategies for UGVs/UAVs

    Get PDF

    Fuzzy Support Vector Machine-based Multi-agent Optimal Path

    Get PDF
    A mobile robot to navigate purposefully from a start location to a target location, needs three basic requirements: sensing, learning, and reasoning. In the existing system, the mobile robot navigates in a known environment on a predefined path. However, the pervasive presence of uncertainty in sensing and learning, makes the choice of a suitable tool of reasoning and decision-making that can deal with incomplete information, vital to ensure a robust control system. This problem can be overcome by the proposed navigation method using fuzzy support vector machine (FSVM). It proposes a fuzzy logic-based support vector machine (SVM) approach to secure a collision-free path avoiding multiple dynamic obstacles. The navigator consists of an FSVM-based collision avoidance. The decisions are taken at each step for the mobile robot to attain the goal position without collision. Fuzzy-SVM rule bases are built, which require simple evaluation data rather than thousands of input-output training data. The effectiveness of the proposed method is verified by a series of simulations and implemented with a microcontroller for navigation.Defence Science Journal, 2010, 60(4), pp.387-391, DOI:http://dx.doi.org/10.14429/dsj.60.49

    Past, present and future of path-planning algorithms for mobile robot navigation in dynamic environments

    Get PDF
    Mobile robots have been making a significant contribution to the advancement of many sectors including automation of mining, space, surveillance, military, health, agriculture and many more. Safe and efficient navigation is a fundamental requirement of mobile robots, thus, the demand for advanced algorithms rapidly increased. Mobile robot navigation encompasses the following four requirements: perception, localization, path-planning and motion control. Among those, path-planning is a vital part of a fast, secure operation. During the last couple of decades, many path-planning algorithms were developed. Despite most of the mobile robot applications being in dynamic environments, the number of algorithms capable of navigating robots in dynamic environments is limited. This paper presents a qualitative comparative study of the up-to-date mobile robot path-planning methods capable of navigating robots in dynamic environments. The paper discusses both classical and heuristic methods including artificial potential field, genetic algorithm, fuzzy logic, neural networks, artificial bee colony, particle swarm optimization, bacterial foraging optimization, ant-colony and Agoraphilic algorithm. The general advantages and disadvantages of each method are discussed. Furthermore, the commonly used state-of-the-art methods are critically analyzed based on six performance criteria: algorithm's ability to navigate in dynamically cluttered areas, moving goal hunting ability, object tracking ability, object path prediction ability, incorporating the obstacle velocity in the decision, validation by simulation and experimentation. This investigation benefits researchers in choosing suitable path-planning methods for different applications as well as identifying gaps in this field. © 2020 IEEE
    • …
    corecore