98,060 research outputs found

    A new governance approach for multi-firm projects: lessons from Olkiluoto 3 and Flamanville 3 nuclear power plant projects

    Get PDF
    We analyze governance in two contemporary nuclear power plant projects: Olkiluoto 3 (Finland) and Flamanville 3 (France). We suggest that in the governance of large multi-firm projects, any of the prevalent governance approaches that rely on market, hierarchy, or hybrid forms, is not adequate as such. This paper opens up avenues towards a novel theory of governance in large projects by adopting a project network view with multiple networked firms within a single project, and by simultaneously going beyond organizational forms that cut across the traditional firm–market dichotomy. Our analysis suggests four changes in the prevailing perspective towards the governance of large projects. First, there should be a shift from viewing multi-firm projects as hierarchical contract organizations to viewing them as supply networks characterized by a complex and networked organizational structure. Second, there should be a shift in the emphasis of the predominant modes of governance, market and hierarchy towards novel governance approaches that emphasize network-level mechanisms such as self-regulation within the project. Third, there should be a shift from viewing projects as temporary endeavors to viewing projects as short-term events or episodes embedded in the long-term sphere of shared history and expected future activities among the involved actors. Fourth, there should be a shift from the prevailing narrow view of a hierarchical project management system towards an open system view of managing in complex and challenging institutional environments

    Hybrid behavioural-based multi-objective space trajectory optimization

    Get PDF
    In this chapter we present a hybridization of a stochastic based search approach for multi-objective optimization with a deterministic domain decomposition of the solution space. Prior to the presentation of the algorithm we introduce a general formulation of the optimization problem that is suitable to describe both single and multi-objective problems. The stochastic approach, based on behaviorism, combinedwith the decomposition of the solutions pace was tested on a set of standard multi-objective optimization problems and on a simple but representative case of space trajectory design

    Proceedings of the 2nd Computer Science Student Workshop: Microsoft Istanbul, Turkey, April 9, 2011

    Get PDF

    Route Swarm: Wireless Network Optimization through Mobility

    Full text link
    In this paper, we demonstrate a novel hybrid architecture for coordinating networked robots in sensing and information routing applications. The proposed INformation and Sensing driven PhysIcally REconfigurable robotic network (INSPIRE), consists of a Physical Control Plane (PCP) which commands agent position, and an Information Control Plane (ICP) which regulates information flow towards communication/sensing objectives. We describe an instantiation where a mobile robotic network is dynamically reconfigured to ensure high quality routes between static wireless nodes, which act as source/destination pairs for information flow. The ICP commands the robots towards evenly distributed inter-flow allocations, with intra-flow configurations that maximize route quality. The PCP then guides the robots via potential-based control to reconfigure according to ICP commands. This formulation, deemed Route Swarm, decouples information flow and physical control, generating a feedback between routing and sensing needs and robotic configuration. We demonstrate our propositions through simulation under a realistic wireless network regime.Comment: 9 pages, 4 figures, submitted to the IEEE International Conference on Intelligent Robots and Systems (IROS) 201

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft
    corecore