535 research outputs found

    Partial containment control over signed graphs

    Get PDF
    In this paper, we deal with the containment control problem in presence of antagonistic interactions. In particular, we focus on the cases in which it is not possible to contain the entire network due to a constrained number of control signals. In this scenario, we study the problem of selecting the nodes where control signals have to be injected to maximize the number of contained nodes. Leveraging graph condensations, we find a suboptimal and computationally efficient solution to this problem, which can be implemented by solving an integer linear problem. The effectiveness of the selection strategy is illustrated through representative simulations

    Data Driven Distributed Bipartite Consensus Tracking for Nonlinear Multiagent Systems via Iterative Learning Control

    Get PDF
    This article explores a data-driven distributed bipartite consensus tracking (DBCT) problem for discrete-time multi-agent systems (MASs) with coopetition networks under repeatable operations. To solve this problem, a time-varying linearization model along the iteration axis is first established by using the measurement input and output (I/O) data of agents. Then a data-driven distributed bipartite consensus iterative learning control (DBCILC) algorithm is proposed considering both fixed and switching topologies. Compared with existing bipartite consensus, the main characteristic is to construct the proposed control protocol without requiring any explicit or implicit information of MASs’ mathematical model. The difference from existing iterative learning control (ILC) approaches is that both the cooperative interactions and antagonistic interactions, and time-varying switching topologies are considered. Furthermore, through rigorous theoretical analysis, the proposed DBCILC approach can guarantee the bipartite consensus reducing tracking errors in the limited iteration steps. Moreover, although not all agents can receive information from the virtual leader directly, the proposed distributed scheme can maintain the performance and reduce the costs of communication. The results of three examples further illustrate the correctness, effectiveness, and applicability of the proposed algorithm

    New decentralized algorithms for spacecraft formation control based on a cyclic approach

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 223-231).When considering the formation control problem for large number of spacecraft, the advantages of implementing control approaches with a centralized coordination mechanism can be outpaced by the risks associated with having a primary vital control unit. Additionally, in formations with a large number of spacecraft, a centralized approach implies an inherent difficulty in gathering and broadcasting information from/to the overall system. Therefore, there is a need to explore efficient decentralized control approaches. In this thesis a new approach to spacecraft formation control is formulated by exploring and enhancing the recent results on the theory of convergence to geometric patterns and exploring the analysis of this approach using the tools of contracting theory. First, an extensive analysis of the cyclic pursuit dynamics leads to developing control laws useful for spacecraft formation flight which, as opposed to the most common approaches in the literature, do not track fixed relative trajectories and therefore, reduce the global coordination requirements. The proposed approach leads to local control laws that verify global emergent behaviors specified as convergence to a particular manifold. A generalized analysis of such control approach by using tools of partial contraction theory is performed, producing important convergence results. By applying and extending results from the theory of partially contracting systems, an approach to deriving sufficient conditions for convergence is formulated. Its use is demonstrated by analyzing several examples and obtaining global convergence results for nonlinear, time varying and more complex interconnected distributed controllers. Experimental results of the implementation of these algorithms were obtained using the SPHERES testbed on board the International Space Station, validating many of the important properties of this decentralized control approach. They are believed to be the first implementation of decentralized formation flight in space. To complement the results we also consider a short analysis of the advantages of decentralized versus centralized approach by comparing the optimal performance and the effects of complexity and robustness for different architectures and address the issues of implementing decentralized algorithms in a inherently coupled system like the Electromagnetic Formation Flight.by Jaime Luís Ramírez Riberos.Ph.D
    • …
    corecore