3,303 research outputs found

    Automated Bilateral Trading of Energy by Alliances in Multi-Agent Electricity Markets

    Get PDF
    ABSTRACT: In liberalized markets, consumers can choose their electricity suppliers or be part of an energy community. The problem with communities is that they may not have enough weight to trade in markets, which can be overcome by forming coalitions. Electricity is traded in spot markets or through bilateral contracts involving consumers and suppliers. This paper is devoted to bilateral contracting, modeled as a negotiation process involving an iterative exchange of offers and counter-offers. It focuses on coalitions of energy communities. Specifically, it presents team and single-agent negotiation models, where each consumer has strategies, tactics, and decision models. Coalition agents are equipped with intra-team strategies and decision protocols. It also describes a study of bilateral contracts involving a seller agent and a coalition of energy communities. By allying into a coalition, members of energy communities reduced their average costs for electricity by between 2% (large consumers) and 64% (small consumers) according to their consumption. Their levelized cost reduction was 19%. The results demonstrate the power of coalitions when negotiating bilateral contracts and the benefit of a low-consumption members alliance with larger players.info:eu-repo/semantics/publishedVersio

    BEHAVIORAL COMPOSITION FOR HETEROGENEOUS SWARMS

    Get PDF
    Research into swarm robotics has produced a robust library of swarm behaviors that excel at defined tasks such as flocking and area search, many of which have potential for application to a wide range of military problems. However, to be successfully applied to an operational environment, swarms must be flexible enough to achieve a wide array of specific objectives and usable enough to be configured and employed by lay operators. This research explored the use of the Mission-based Architecture for Swarm Composability (MASC) to develop mission-specific tactics as compositions of more general, reusable plays for use with the Advanced Robotic Systems Engineering Laboratory (ARSENL) swarm system. Three tactics were developed to conduct autonomous search of a geographic area and investigation of generated contacts of interest. The tactics were tested in live-flight and virtual environment experiments and compared to a preexisting monolithic behavior implementation completing the same task. Measures of performance were defined and observed that verified the effectiveness of solutions and confirmed the advantages that composition provides with respect to reusability and rapid development of increasingly complex behaviors.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Tasks for Agent-Based Negotiation Teams:Analysis, Review, and Challenges

    Get PDF
    An agent-based negotiation team is a group of interdependent agents that join together as a single negotiation party due to their shared interests in the negotiation at hand. The reasons to employ an agent-based negotiation team may vary: (i) more computation and parallelization capabilities, (ii) unite agents with different expertise and skills whose joint work makes it possible to tackle complex negotiation domains, (iii) the necessity to represent different stakeholders or different preferences in the same party (e.g., organizations, countries, and married couple). The topic of agent-based negotiation teams has been recently introduced in multi-agent research. Therefore, it is necessary to identify good practices, challenges, and related research that may help in advancing the state-of-the-art in agent-based negotiation teams. For that reason, in this article we review the tasks to be carried out by agent-based negotiation teams. Each task is analyzed and related with current advances in different research areas. The analysis aims to identify special challenges that may arise due to the particularities of agent-based negotiation teams.Comment: Engineering Applications of Artificial Intelligence, 201

    Agent-based model of citizen energy communities used to negotiate bilateral contracts in electricity markets

    Get PDF
    ABSTRACT: The worldwide targets for carbon-neutral societies increased the penetration of distributed generation and storage. Smart cities now play a key role in achieving these targets by considering the alliances of their demand and supply assets as local citizen energy communities. These communities need to have enough weight to trade electricity in wholesale markets. Trading of electricity can be done in spot markets or by bilateral contracts involving customers and suppliers. This paper is devoted to bilateral contracting, which is modeled as a negotiation process involving an iterative exchange of offers and counter-offers. This article focuses on local citizen energy communities. Specifically, it presents team and single-agent negotiation models, where each member has its sets of strategies and tactics and also its decision model. Community agents are equipped with intra-team strategies and decision protocols. To evaluate the benefits of CECs, models of both coalition formation and management have been adapted. This paper also describes a case study on forward bilateral contracts, involving a retailer agent and three different types of citizen energy communities. The results demonstrate the benefits of CECs during the negotiation of private bilateral contracts of electricity. Furthermore, they also demonstrate that in the case of using a representative strategy, the selection of the mediator may be critical for achieving a good deal.info:eu-repo/semantics/publishedVersio

    Complex negotiations in multi-agent systems

    Full text link
    Los sistemas multi-agente (SMA) son sistemas distribuidos donde entidades autónomas llamadas agentes, ya sean humanos o software, persiguen sus propios objetivos. El paradigma de SMA ha sido propuesto como la aproximación de modelo apropiada para aplicaciones como el comercio electrónico, los sistemas multi-robot, aplicaciones de seguridad, etc. En la comunidad de SMA, la visión de sistemas multi-agente abiertos, donde agentes heterogéneos pueden entrar y salir del sistema dinámicamente, ha cobrado fuerza como paradigma de modelado debido a su relación conceptual con tecnologías como la Web, la computación grid, y las organizaciones virtuales. Debido a la heterogeneidad de los agentes, y al hecho de dirigirse por sus propios objetivos, el conflicto es un fenómeno candidato a aparecer en los sistemas multi-agente. En los últimos años, el término tecnologías del acuerdo ha sido usado para referirse a todos aquellos mecanismos que, directa o indirectamente, promueven la resolución de conflictos en sistemas computacionales como los sistemas multi-agente. Entre las tecnologías del acuerdo, la negociación automática ha sido propuesta como uno de los mecanismos clave en la resolución de conflictos debido a su uso análogo en la resolución de conflictos entre humanos. La negociación automática consiste en el intercambio automático de propuestas llevado a cabo por agentes software en nombre de sus usuarios. El objetivo final es conseguir un acuerdo con todas las partes involucradas. Pese a haber sido estudiada por la Inteligencia Artificial durante años, distintos problemas todavía no han sido resueltos por la comunidad científica todavía. El principal objetivo de esta tesis es proponer modelos de negociación para escenarios complejos donde la complejidad deriva de (1) las limitaciones computacionales o (ii) la necesidad de representar las preferencias de múltiples individuos. En la primera parte de esta tesis proponemos un modelo de negociación bilateral para el problema deSánchez Anguix, V. (2013). Complex negotiations in multi-agent systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/21570Palanci

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Building, sustaining and dissolving large scale change proposal coalitions in top management teams

    Get PDF
    Recent studies into the political aspects of large scale change in organisations have highlighted the need for a deeper understanding of managerial elites in the change context. The extant literature is guilty of conflating large scale change into a single process, and commentators describe and prescribe political processes and behaviours without differentiating between the proposal and implementation stages of change. The research presented in this thesis provides insights into the nature and characteristics of large scale change proposal coalitions and the behaviours and tactics of coalition leaders in top management teams across a range of organisational settings in the UK private sector. Data was collected and analysed using a qualitative methodology. An elite style semistructured interview schedule was used with a research sample of fifty members of top management teams drawn from across fourteen organisations in thirteen industries. The findings suggest that large scale change proposal coalitions follow a five phase lifecycle: initiate, build, sustain, dissolve, and capture and transfer. Within these phases coalition leaders tend to perform three primary roles: builder, sustainer and dissolver. The sequence of gathering support to build a coalition is heavily influenced by the hierarchical position of the builder, and the behaviours and tactics used are contingent upon whether an individual is engaged in an upward inter-tier, intra-tier, or downward inter-tier support gathering exercise. Once a large scale change proposal coalition had been established the leadership role changes from building to sustaining. Four principal types of coalition are identified: aligned coalitions, unaligned coalitions, unfocused coalitions and fragmented coalitions. Different leadership skills are required for each. Once a proposal has been approved or rejected the evidence suggests that coalitions should be dissolved as rapidly as practically possible using one or a combination of three dissolution techniques. These findings have important implications for academic enquiry and practitioners

    Ontologies to Enable Interoperability of Multi-Agent Electricity Markets Simulation and Decision Support

    Get PDF
    This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets’ constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support toolThis work has received funding from the EU Horizon 2020 research and innovation program under project TradeRES (grant agreement No 864276), from FEDER Funds through COMPETE program and from National Funds through (FCT) under projects CEECIND/01811/2017 and UID/EEA/00760/2019. Gabriel Santos was supported by the PhD grant SFRH/BD/118487/2016 from National Funds through FCTinfo:eu-repo/semantics/publishedVersio

    Autonomous Agents for Business Process Management

    No full text
    Traditional approaches to managing business processes are often inadequate for large-scale organisation-wide, dynamic settings. However, since Internet and Intranet technologies have become widespread, an increasing number of business processes exhibit these properties. Therefore, a new approach is needed. To this end, we describe the motivation, conceptualization, design, and implementation of a novel agent-based business process management system. The key advance of our system is that responsibility for enacting various components of the business process is delegated to a number of autonomous problem solving agents. To enact their role, these agents typically interact and negotiate with other agents in order to coordinate their actions and to buy in the services they require. This approach leads to a system that is significantly more agile and robust than its traditional counterparts. To help demonstrate these benefits, a companion paper describes the application of our system to a real-world problem faced by British Telecom

    MODELLING & SIMULATION HYBRID WARFARE Researches, Models and Tools for Hybrid Warfare and Population Simulation

    Get PDF
    The Hybrid Warfare phenomena, which is the subject of the current research, has been framed by the work of Professor Agostino Bruzzone (University of Genoa) and Professor Erdal Cayirci (University of Stavanger), that in June 2016 created in order to inquiry the subject a dedicated Exploratory Team, which was endorsed by NATO Modelling & Simulation Group (a panel of the NATO Science & Technology organization) and established with the participation as well of the author. The author brought his personal contribution within the ET43 by introducing meaningful insights coming from the lecture of \u201cFight by the minutes: Time and the Art of War (1994)\u201d, written by Lieutenant Colonel US Army (Rtd.) Robert Leonhard; in such work, Leonhard extensively developed the concept that \u201cTime\u201d, rather than geometry of the battlefield and/or firepower, is the critical factor to tackle in military operations and by extension in Hybrid Warfare. The critical reflection about the time - both in its quantitative and qualitative dimension - in a hybrid confrontation it is addressed and studied inside SIMCJOH, a software built around challenges that imposes literally to \u201cFight by the minutes\u201d, echoing the core concept expressed in the eponymous work. Hybrid Warfare \u2013 which, by definition and purpose, aims to keep the military commitment of both aggressor and defender at the lowest - can gain enormous profit by employing a wide variety of non-military tools, turning them into a weapon, as in the case of the phenomena of \u201cweaponization of mass migrations\u201d, as it is examined in the \u201cDies Irae\u201d simulation architecture. Currently, since migration it is a very sensitive and divisive issue among the public opinions of many European countries, cynically leveraging on a humanitarian emergency caused by an exogenous, inducted migration, could result in a high level of political and social destabilization, which indeed favours the concurrent actions carried on by other hybrid tools. Other kind of disruption however, are already available in the arsenal of Hybrid Warfare, such cyber threats, information campaigns lead by troll factories for the diffusion of fake/altered news, etc. From this perspective the author examines how the TREX (Threat network simulation for REactive eXperience) simulator is able to offer insights about a hybrid scenario characterized by an intense level of social disruption, brought by cyber-attacks and systemic faking of news. Furthermore, the rising discipline of \u201cStrategic Engineering\u201d, as envisaged by Professor Agostino Bruzzone, when matched with the operational requirements to fulfil in order to counter Hybrid Threats, it brings another innovative, as much as powerful tool, into the professional luggage of the military and the civilian employed in Defence and Homeland security sectors. Hybrid is not the New War. What is new is brought by globalization paired with the transition to the information age and rising geopolitical tensions, which have put new emphasis on hybrid hostilities that manifest themselves in a contemporary way. Hybrid Warfare is a deliberate choice of an aggressor. While militarily weak nations can resort to it in order to re-balance the odds, instead military strong nations appreciate its inherent effectiveness coupled with the denial of direct responsibility, thus circumventing the rules of the International Community (IC). In order to be successful, Hybrid Warfare should consist of a highly coordinated, sapient mix of diverse and dynamic combination of regular forces, irregular forces (even criminal elements), cyber disruption etc. all in order to achieve effects across the entire DIMEFIL/PMESII_PT spectrum. However, the owner of the strategy, i.e. the aggressor, by keeping the threshold of impunity as high as possible and decreasing the willingness of the defender, can maintain his Hybrid Warfare at a diplomatically feasible level; so the model of the capacity, willingness and threshold, as proposed by Cayirci, Bruzzone and Gunneriusson (2016), remains critical to comprehend Hybrid Warfare. Its dynamicity is able to capture the evanescent, blurring line between Hybrid Warfare and Conventional Warfare. In such contest time is the critical factor: this because it is hard to foreseen for the aggressor how long he can keep up with such strategy without risking either the retaliation from the International Community or the depletion of resources across its own DIMEFIL/PMESII_PT spectrum. Similar discourse affects the defender: if he isn\u2019t able to cope with Hybrid Threats (i.e. taking no action), time works against him; if he is, he can start to develop counter narrative and address physical countermeasures. However, this can lead, in the medium long period, to an unforeseen (both for the attacker and the defender) escalation into a large, conventional, armed conflict. The performance of operations that required more than kinetic effects drove the development of DIMEFIL/PMESII_PT models and in turn this drive the development of Human Social Culture Behavior Modelling (HCSB), which should stand at the core of the Hybrid Warfare modelling and simulation efforts. Multi Layers models are fundamental to evaluate Strategies and Support Decisions: currently there are favourable conditions to implement models of Hybrid Warfare, such as Dies Irae, SIMCJOH and TREX, in order to further develop tools and war-games for studying new tactics, execute collective training and to support decisions making and analysis planning. The proposed approach is based on the idea to create a mosaic made by HLA interoperable simulators able to be combined as tiles to cover an extensive part of the Hybrid Warfare, giving the users an interactive and intuitive environment based on the \u201cModelling interoperable Simulation and Serious Game\u201d (MS2G) approach. From this point of view, the impressive capabilities achieved by IA-CGF in human behavior modeling to support population simulation as well as their native HLA structure, suggests to adopt them as core engine in this application field. However, it necessary to highlight that, when modelling DIMEFIL/PMESII_PT domains, the researcher has to be aware of the bias introduced by the fact that especially Political and Social \u201cscience\u201d are accompanied and built around value judgement. From this perspective, the models proposed by Cayirci, Bruzzone, Guinnarson (2016) and by Balaban & Mileniczek (2018) are indeed a courageous tentative to import, into the domain of particularly poorly understood phenomena (social, politics, and to a lesser degree economics - Hartley, 2016), the mathematical and statistical instruments and the methodologies employed by the pure, hard sciences. Nevertheless, just using the instruments and the methodology of the hard sciences it is not enough to obtain the objectivity, and is such aspect the representations of Hybrid Warfare mechanics could meet their limit: this is posed by the fact that they use, as input for the equations that represents Hybrid Warfare, not physical data observed during a scientific experiment, but rather observation of the reality that assumes implicitly and explicitly a value judgment, which could lead to a biased output. Such value judgement it is subjective, and not objective like the mathematical and physical sciences; when this is not well understood and managed by the academic and the researcher, it can introduce distortions - which are unacceptable for the purpose of the Science - which could be used as well to enforce a narrative mainstream that contains a so called \u201ctruth\u201d, which lies inside the boundary of politics rather than Science. Those observations around subjectivity of social sciences vs objectivity of pure sciences, being nothing new, suggest however the need to examine the problem under a new perspective, less philosophical and more leaned toward the practical application. The suggestion that the author want make here is that the Verification and Validation process, in particular the methodology used by Professor Bruzzone in doing V&V for SIMCJOH (2016) and the one described in the Modelling & Simulation User Risk Methodology (MURM) developed by Pandolfini, Youngblood et all (2018), could be applied to evaluate if there is a bias and the extent of the it, or at least making clear the value judgment adopted in developing the DIMEFIL/PMESII_PT models. Such V&V research is however outside the scope of the present work, even though it is an offspring of it, and for such reason the author would like to make further inquiries on this particular subject in the future. Then, the theoretical discourse around Hybrid Warfare has been completed addressing the need to establish a new discipline, Strategic Engineering, very much necessary because of the current a political and economic environment which allocates diminishing resources to Defense and Homeland Security (at least in Europe). However, Strategic Engineering can successfully address its challenges when coupled with the understanding and the management of the fourth dimension of military and hybrid operations, Time. For the reasons above, and as elaborated by Leonhard and extensively discussed in the present work, addressing the concern posed by Time dimension is necessary for the success of any military or Hybrid confrontation. The SIMCJOH project, examined under the above perspective, proved that the simulator has the ability to address the fourth dimension of military and non-military confrontation. In operations, Time is the most critical factor during execution, and this was successfully transferred inside the simulator; as such, SIMCJOH can be viewed as a training tool and as well a dynamic generator of events for the MEL/MIL execution during any exercise. In conclusion, SIMCJOH Project successfully faces new challenging aspects, allowed to study and develop new simulation models in order to support decision makers, Commanders and their Staff. Finally, the question posed by Leonhard in terms of recognition of the importance of time management of military operations - nowadays Hybrid Conflict - has not been answered yet; however, the author believes that Modelling and Simulation tools and techniques can represent the safe \u201ctank\u201d where innovative and advanced scientific solutions can be tested, exploiting the advantage of doing it in a synthetic environment
    corecore