17,487 research outputs found

    Theories about architecture and performance of multi-agent systems

    Get PDF
    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are rather abstract of nature and do not pay attention to the agent level. In contrast, classical organization theories offer a rather rich source of inspiration for developing multi-agent models because of their focus on the agent level. This paper studies the plausibility of theoretical choices in the construction of multi-agent systems. Multi-agent systems have to be plausible from a philosophical, psychological, and organizational point of view. For each of these points of view, alternative theories exist. Philosophically, the organization can be seen from the viewpoints of realism and constructivism. Psychologically, several agent types can be distinguished. A main problem in the construction of psychologically plausible computer agents is the integration of response function systems with representational systems. Organizationally, we study aspects of the architecture of multi-agent systems, namely topology, system function decomposition, coordination and synchronization of agent processes, and distribution of knowledge and language characteristics among agents. For each of these aspects, several theoretical perspectives exist.

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Organization Development for Social Change

    Get PDF
    The field of organization development (OD) has emerged from efforts to improve the performance of organizations, largely in the for-profit sector but more recently in the public and not-for-profit sectors as well. This paper examines how OD concepts and tools can be used to solve problems and foster constructive change at the societal level as well. It examines four areas in which OD can make such contributions: (1) strengthening social change-focused organizations, (2) scaling up the impacts of such agencies, (3) creating new inter-organizational systems, and (4) changing contexts that shape the action of actors strategic to social change. It discusses examples and the kinds of change agent roles and interventions that are important for each. Finally, it discusses some implications for organization development intervention, practitioners, and the field at large.This publication is Hauser Center Working Paper No. 25. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Socially-distributed cognition and cognitive architectures: towards an ACT-R-based cognitive social simulation capability

    No full text
    ACT-R is one of the most widely used cognitive architectures, and it has been used to model hundreds of phenomena described in the cognitive psychology literature. In spite of this, there are relatively few studies that have attempted to apply ACT-R to situations involving social interaction. This is an important omission since the social aspects of cognition have been a growing area of interest in the cognitive science community, and an understanding of the dynamics of collective cognition is of particular importance in many organizational settings. In order to support the computational modeling and simulation of socially-distributed cognitive processes, a simulation capability based on the ACT-R architecture is described. This capability features a number of extensions to the core ACT-R architecture that are intended to support social interaction and collaborative problem solving. The core features of a number of supporting applications and services are also described. These applications/services support the execution, monitoring and analysis of simulation experiments. Finally, a system designed to record human behavioral data in a collective problem-solving task is described. This system is being used to undertake a range of experiments with teams of human subjects, and it will ultimately support the development of high fidelity ACT-R cognitive models. Such models can be used in conjunction with the ACT-R simulation capability to test hypotheses concerning the interaction between cognitive, social and technological factors in tasks involving socially-distributed information processing

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems
    corecore