27,484 research outputs found

    Multi-step domain adaptation by adversarial attack to HΔH\mathcal{H} \Delta \mathcal{H}-divergence

    Full text link
    Adversarial examples are transferable between different models. In our paper, we propose to use this property for multi-step domain adaptation. In unsupervised domain adaptation settings, we demonstrate that replacing the source domain with adversarial examples to HΔH\mathcal{H} \Delta \mathcal{H}-divergence can improve source classifier accuracy on the target domain. Our method can be connected to most domain adaptation techniques. We conducted a range of experiments and achieved improvement in accuracy on Digits and Office-Home datasets

    MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic Segmentation

    Full text link
    Recent progresses in domain adaptive semantic segmentation demonstrate the effectiveness of adversarial learning (AL) in unsupervised domain adaptation. However, most adversarial learning based methods align source and target distributions at a global image level but neglect the inconsistency around local image regions. This paper presents a novel multi-level adversarial network (MLAN) that aims to address inter-domain inconsistency at both global image level and local region level optimally. MLAN has two novel designs, namely, region-level adversarial learning (RL-AL) and co-regularized adversarial learning (CR-AL). Specifically, RL-AL models prototypical regional context-relations explicitly in the feature space of a labelled source domain and transfers them to an unlabelled target domain via adversarial learning. CR-AL fuses region-level AL and image-level AL optimally via mutual regularization. In addition, we design a multi-level consistency map that can guide domain adaptation in both input space (i.e.i.e., image-to-image translation) and output space (i.e.i.e., self-training) effectively. Extensive experiments show that MLAN outperforms the state-of-the-art with a large margin consistently across multiple datasets.Comment: Submitted to P

    Adversarial Network with Multiple Classifiers for Open Set Domain Adaptation

    Full text link
    Domain adaptation aims to transfer knowledge from a domain with adequate labeled samples to a domain with scarce labeled samples. Prior research has introduced various open set domain adaptation settings in the literature to extend the applications of domain adaptation methods in real-world scenarios. This paper focuses on the type of open set domain adaptation setting where the target domain has both private ('unknown classes') label space and the shared ('known classes') label space. However, the source domain only has the 'known classes' label space. Prevalent distribution-matching domain adaptation methods are inadequate in such a setting that demands adaptation from a smaller source domain to a larger and diverse target domain with more classes. For addressing this specific open set domain adaptation setting, prior research introduces a domain adversarial model that uses a fixed threshold for distinguishing known from unknown target samples and lacks at handling negative transfers. We extend their adversarial model and propose a novel adversarial domain adaptation model with multiple auxiliary classifiers. The proposed multi-classifier structure introduces a weighting module that evaluates distinctive domain characteristics for assigning the target samples with weights which are more representative to whether they are likely to belong to the known and unknown classes to encourage positive transfers during adversarial training and simultaneously reduces the domain gap between the shared classes of the source and target domains. A thorough experimental investigation shows that our proposed method outperforms existing domain adaptation methods on a number of domain adaptation datasets.Comment: Accepted in IEEE Transactions on Multimedia (in press), 202

    Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation

    Full text link
    Previous studies have shown that leveraging domain index can significantly boost domain adaptation performance (arXiv:2007.01807, arXiv:2202.03628). However, such domain indices are not always available. To address this challenge, we first provide a formal definition of domain index from the probabilistic perspective, and then propose an adversarial variational Bayesian framework that infers domain indices from multi-domain data, thereby providing additional insight on domain relations and improving domain adaptation performance. Our theoretical analysis shows that our adversarial variational Bayesian framework finds the optimal domain index at equilibrium. Empirical results on both synthetic and real data verify that our model can produce interpretable domain indices which enable us to achieve superior performance compared to state-of-the-art domain adaptation methods. Code is available at https://github.com/Wang-ML-Lab/VDI.Comment: ICLR 2023 Spotlight (notable-top-25%
    • …
    corecore