193 research outputs found

    Analytical results for the multi-objective design of model-predictive control

    Full text link
    In model-predictive control (MPC), achieving the best closed-loop performance under a given computational resource is the underlying design consideration. This paper analyzes the MPC design problem with control performance and required computational resource as competing design objectives. The proposed multi-objective design of MPC (MOD-MPC) approach extends current methods that treat control performance and the computational resource separately -- often with the latter as a fixed constraint -- which requires the implementation hardware to be known a priori. The proposed approach focuses on the tuning of structural MPC parameters, namely sampling time and prediction horizon length, to produce a set of optimal choices available to the practitioner. The posed design problem is then analyzed to reveal key properties, including smoothness of the design objectives and parameter bounds, and establish certain validated guarantees. Founded on these properties, necessary and sufficient conditions for an effective and efficient solver are presented, leading to a specialized multi-objective optimizer for the MOD-MPC being proposed. Finally, two real-world control problems are used to illustrate the results of the design approach and importance of the developed conditions for an effective solver of the MOD-MPC problem

    Evolutionary algorithms for the selection of single nucleotide polymorphisms

    Get PDF
    BACKGROUND: Large databases of single nucleotide polymorphisms (SNPs) are available for use in genomics studies. Typically, investigators must choose a subset of SNPs from these databases to employ in their studies. The choice of subset is influenced by many factors, including estimated or known reliability of the SNP, biochemical factors, intellectual property, cost, and effectiveness of the subset for mapping genes or identifying disease loci. We present an evolutionary algorithm for multiobjective SNP selection. RESULTS: We implemented a modified version of the Strength-Pareto Evolutionary Algorithm (SPEA2) in Java. Our implementation, Multiobjective Analyzer for Genetic Marker Acquisition (MAGMA), approximates the set of optimal trade-off solutions for large problems in minutes. This set is very useful for the design of large studies, including those oriented towards disease identification, genetic mapping, population studies, and haplotype-block elucidation. CONCLUSION: Evolutionary algorithms are particularly suited for optimization problems that involve multiple objectives and a complex search space on which exact methods such as exhaustive enumeration cannot be applied. They provide flexibility with respect to the problem formulation if a problem description evolves or changes. Results are produced as a trade-off front, allowing the user to make informed decisions when prioritizing factors. MAGMA is open source and available at . Evolutionary algorithms are well suited for many other applications in genomics

    Discrete optimization algorithms for marker-assisted plant breeding

    Get PDF

    Multi-agent Path Planning and Network Flow

    Full text link
    This paper connects multi-agent path planning on graphs (roadmaps) to network flow problems, showing that the former can be reduced to the latter, therefore enabling the application of combinatorial network flow algorithms, as well as general linear program techniques, to multi-agent path planning problems on graphs. Exploiting this connection, we show that when the goals are permutation invariant, the problem always has a feasible solution path set with a longest finish time of no more than n+V−1n + V - 1 steps, in which nn is the number of agents and VV is the number of vertices of the underlying graph. We then give a complete algorithm that finds such a solution in O(nVE)O(nVE) time, with EE being the number of edges of the graph. Taking a further step, we study time and distance optimality of the feasible solutions, show that they have a pairwise Pareto optimal structure, and again provide efficient algorithms for optimizing two of these practical objectives.Comment: Corrected an inaccuracy on time optimal solution for average arrival tim

    Biological Networks

    Get PDF
    Networks of coordinated interactions among biological entities govern a myriad of biological functions that span a wide range of both length and time scales—from ecosystems to individual cells and from years to milliseconds. For these networks, the concept “the whole is greater than the sum of its parts” applies as a norm rather than an exception. Meanwhile, continued advances in molecular biology and high-throughput technology have enabled a broad and systematic interrogation of whole-cell networks, allowing the investigation of biological processes and functions at unprecedented breadth and resolution—even down to the single-cell level. The explosion of biological data, especially molecular-level intracellular data, necessitates new paradigms for unraveling the complexity of biological networks and for understanding how biological functions emerge from such networks. These paradigms introduce new challenges related to the analysis of networks in which quantitative approaches such as machine learning and mathematical modeling play an indispensable role. The Special Issue on “Biological Networks” showcases advances in the development and application of in silico network modeling and analysis of biological systems
    • 

    corecore