6,298 research outputs found

    Joint Energy-based Detection and Classificationon of Multilingual Text Lines

    Full text link
    This paper proposes a new hierarchical MDL-based model for a joint detection and classification of multilingual text lines in im- ages taken by hand-held cameras. The majority of related text detec- tion methods assume alphabet-based writing in a single language, e.g. in Latin. They use simple clustering heuristics specific to such texts: prox- imity between letters within one line, larger distance between separate lines, etc. We are interested in a significantly more ambiguous problem where images combine alphabet and logographic characters from multiple languages and typographic rules vary a lot (e.g. English, Korean, and Chinese). Complexity of detecting and classifying text lines in multiple languages calls for a more principled approach based on information- theoretic principles. Our new MDL model includes data costs combining geometric errors with classification likelihoods and a hierarchical sparsity term based on label costs. This energy model can be efficiently minimized by fusion moves. We demonstrate robustness of the proposed algorithm on a large new database of multilingual text images collected in the pub- lic transit system of Seoul

    TextProposals: a Text-specific Selective Search Algorithm for Word Spotting in the Wild

    Full text link
    Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way. Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10 percent f-score the best-performing method in the last ICDAR Robust Reading Competition. Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposal

    Accurate Text Localization in Natural Image with Cascaded Convolutional Text Network

    Full text link
    We introduce a new top-down pipeline for scene text detection. We propose a novel Cascaded Convolutional Text Network (CCTN) that joints two customized convolutional networks for coarse-to-fine text localization. The CCTN fast detects text regions roughly from a low-resolution image, and then accurately localizes text lines from each enlarged region. We cast previous character based detection into direct text region estimation, avoiding multiple bottom- up post-processing steps. It exhibits surprising robustness and discriminative power by considering whole text region as detection object which provides strong semantic information. We customize convolutional network by develop- ing rectangle convolutions and multiple in-network fusions. This enables it to handle multi-shape and multi-scale text efficiently. Furthermore, the CCTN is computationally efficient by sharing convolutional computations, and high-level property allows it to be invariant to various languages and multiple orientations. It achieves 0.84 and 0.86 F-measures on the ICDAR 2011 and ICDAR 2013, delivering substantial improvements over state-of-the-art results [23, 1]

    Stroke extraction for offline handwritten mathematical expression recognition

    Full text link
    Offline handwritten mathematical expression recognition is often considered much harder than its online counterpart due to the absence of temporal information. In order to take advantage of the more mature methods for online recognition and save resources, an oversegmentation approach is proposed to recover strokes from textual bitmap images automatically. The proposed algorithm first breaks down the skeleton of a binarized image into junctions and segments, then segments are merged to form strokes, finally stroke order is normalized by using recursive projection and topological sort. Good offline accuracy was obtained in combination with ordinary online recognizers, which are not specially designed for extracted strokes. Given a ready-made state-of-the-art online handwritten mathematical expression recognizer, the proposed procedure correctly recognized 58.22%, 65.65%, and 65.22% of the offline formulas rendered from the datasets of the Competitions on Recognition of Online Handwritten Mathematical Expressions(CROHME) in 2014, 2016, and 2019 respectively. Furthermore, given a trainable online recognition system, retraining it with extracted strokes resulted in an offline recognizer with the same level of accuracy. On the other hand, the speed of the entire pipeline was fast enough to facilitate on-device recognition on mobile phones with limited resources. To conclude, stroke extraction provides an attractive way to build optical character recognition software.Comment: 22 pages, 7 figure

    A Fast Hierarchical Method for Multi-script and Arbitrary Oriented Scene Text Extraction

    Full text link
    Typography and layout lead to the hierarchical organisation of text in words, text lines, paragraphs. This inherent structure is a key property of text in any script and language, which has nonetheless been minimally leveraged by existing text detection methods. This paper addresses the problem of text segmentation in natural scenes from a hierarchical perspective. Contrary to existing methods, we make explicit use of text structure, aiming directly to the detection of region groupings corresponding to text within a hierarchy produced by an agglomerative similarity clustering process over individual regions. We propose an optimal way to construct such an hierarchy introducing a feature space designed to produce text group hypotheses with high recall and a novel stopping rule combining a discriminative classifier and a probabilistic measure of group meaningfulness based in perceptual organization. Results obtained over four standard datasets, covering text in variable orientations and different languages, demonstrate that our algorithm, while being trained in a single mixed dataset, outperforms state of the art methods in unconstrained scenarios.Comment: Manuscript Preprint. 11 pages. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Reading Text in the Wild with Convolutional Neural Networks

    Full text link
    In this work we present an end-to-end system for text spotting -- localising and recognising text in natural scene images -- and text based image retrieval. This system is based on a region proposal mechanism for detection and deep convolutional neural networks for recognition. Our pipeline uses a novel combination of complementary proposal generation techniques to ensure high recall, and a fast subsequent filtering stage for improving precision. For the recognition and ranking of proposals, we train very large convolutional neural networks to perform word recognition on the whole proposal region at the same time, departing from the character classifier based systems of the past. These networks are trained solely on data produced by a synthetic text generation engine, requiring no human labelled data. Analysing the stages of our pipeline, we show state-of-the-art performance throughout. We perform rigorous experiments across a number of standard end-to-end text spotting benchmarks and text-based image retrieval datasets, showing a large improvement over all previous methods. Finally, we demonstrate a real-world application of our text spotting system to allow thousands of hours of news footage to be instantly searchable via a text query

    Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection

    Full text link
    Detecting incidental scene text is a challenging task because of multi-orientation, perspective distortion, and variation of text size, color and scale. Retrospective research has only focused on using rectangular bounding box or horizontal sliding window to localize text, which may result in redundant background noise, unnecessary overlap or even information loss. To address these issues, we propose a new Convolutional Neural Networks (CNNs) based method, named Deep Matching Prior Network (DMPNet), to detect text with tighter quadrangle. First, we use quadrilateral sliding windows in several specific intermediate convolutional layers to roughly recall the text with higher overlapping area and then a shared Monte-Carlo method is proposed for fast and accurate computing of the polygonal areas. After that, we designed a sequential protocol for relative regression which can exactly predict text with compact quadrangle. Moreover, a auxiliary smooth Ln loss is also proposed for further regressing the position of text, which has better overall performance than L2 loss and smooth L1 loss in terms of robustness and stability. The effectiveness of our approach is evaluated on a public word-level, multi-oriented scene text database, ICDAR 2015 Robust Reading Competition Challenge 4 "Incidental scene text localization". The performance of our method is evaluated by using F-measure and found to be 70.64%, outperforming the existing state-of-the-art method with F-measure 63.76%.Comment: 8 Pages, 7 figures. Accepted to appear in CVPR 201

    End-to-End Text Recognition with Hybrid HMM Maxout Models

    Full text link
    The problem of detecting and recognizing text in natural scenes has proved to be more challenging than its counterpart in documents, with most of the previous work focusing on a single part of the problem. In this work, we propose new solutions to the character and word recognition problems and then show how to combine these solutions in an end-to-end text-recognition system. We do so by leveraging the recently introduced Maxout networks along with hybrid HMM models that have proven useful for voice recognition. Using these elements, we build a tunable and highly accurate recognition system that beats state-of-the-art results on all the sub-problems for both the ICDAR 2003 and SVT benchmark datasets.Comment: 9 pages, 7 figure

    Overlay Text Extraction From TV News Broadcast

    Full text link
    The text data present in overlaid bands convey brief descriptions of news events in broadcast videos. The process of text extraction becomes challenging as overlay text is presented in widely varying formats and often with animation effects. We note that existing edge density based methods are well suited for our application on account of their simplicity and speed of operation. However, these methods are sensitive to thresholds and have high false positive rates. In this paper, we present a contrast enhancement based preprocessing stage for overlay text detection and a parameter free edge density based scheme for efficient text band detection. The second contribution of this paper is a novel approach for multiple text region tracking with a formal identification of all possible detection failure cases. The tracking stage enables us to establish the temporal presence of text bands and their linking over time. The third contribution is the adoption of Tesseract OCR for the specific task of overlay text recognition using web news articles. The proposed approach is tested and found superior on news videos acquired from three Indian English television news channels along with benchmark datasets.Comment: Published in INDICON 201

    Scene Text Detection via Holistic, Multi-Channel Prediction

    Full text link
    Recently, scene text detection has become an active research topic in computer vision and document analysis, because of its great importance and significant challenge. However, vast majority of the existing methods detect text within local regions, typically through extracting character, word or line level candidates followed by candidate aggregation and false positive elimination, which potentially exclude the effect of wide-scope and long-range contextual cues in the scene. To take full advantage of the rich information available in the whole natural image, we propose to localize text in a holistic manner, by casting scene text detection as a semantic segmentation problem. The proposed algorithm directly runs on full images and produces global, pixel-wise prediction maps, in which detections are subsequently formed. To better make use of the properties of text, three types of information regarding text region, individual characters and their relationship are estimated, with a single Fully Convolutional Network (FCN) model. With such predictions of text properties, the proposed algorithm can simultaneously handle horizontal, multi-oriented and curved text in real-world natural images. The experiments on standard benchmarks, including ICDAR 2013, ICDAR 2015 and MSRA-TD500, demonstrate that the proposed algorithm substantially outperforms previous state-of-the-art approaches. Moreover, we report the first baseline result on the recently-released, large-scale dataset COCO-Text.Comment: 10 pages, 9 figures, 5 table
    • …
    corecore