85,772 research outputs found

    Charging of electric vehicles at commercial buildings

    Get PDF
    The objective of this thesis was to investigate the feasibility of EV charging management for reducing the electricity cost of commercial buildings. A predictive model was developed to assist the commercial building manager reduce its energy bills by predicting the ā€œtriadā€ peak dates and the buildingā€™s energy demand. Real weather data were analysed and considered to increase the accuracy of the forecast. The model was evaluated using real ā€œtriadā€ peak, weather and energy consumption data from a commercial building facility in Manchester. To enable the building manager reduce the EV charging costs, a charging control algorithm was developed and its impact on the demand profile and daily electricity cost of a commercial building facility were studied. The predictive model and the charging control algorithm were integrated into a cloud-based Local Energy Management System (LEMS) for the aggregation and flexible demand management of buildings, energy storage units and EVs. The operation of the LEMS was demonstrated through simulation scenarios using real data from a commercial building facility in Manchester. To fully understand the EV integration consequences, the behaviour of the EV drivers and its impact on the road transport and electric power system has been studied. A multi-agent simulation model was developed to simulate the charging and routing behaviour of the EV drivers. The EV drivers were simulated as autonomous agents in a complex environment consisted of an electric power and road transport network. Different behavioural profiles were considered to describe the way an EV driver deals with the everyday challenges

    An ARTMAP-incorporated Multi-Agent System for Building Intelligent Heat Management

    Get PDF
    This paper presents an ARTMAP-incorporated multi-agent system (MAS) for building heat management, which aims to maintain the desired space temperature defined by the building occupants (thermal comfort management) and improve energy efficiency by intelligently controlling the energy flow and usage in the building (building energy control). Existing MAS typically uses rule-based approaches to describe the behaviours and the processes of its agents, and the rules are fixed. The incorporation of artificial neural network (ANN) techniques to the agents can provide for the required online learning and adaptation capabilities. A three-layer MAS is proposed for building heat management and ARTMAP is incorporated into the agents so as to facilitate online learning and adaptation capabilities. Simulation results demonstrate that ARTMAP incorporated MAS provides better (automated) energy control and thermal comfort management for a building environment in comparison to its existing rule-based MAS approach

    Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach

    Get PDF
    The rapidly growing world energy use already has concerns over the exhaustion of energy resources andheavy environmental impacts. As a result of these concerns, a trend of green and smart cities has beenincreasing. To respond to this increasing trend of smart cities with buildings every time more complex,in this paper we have proposed a new method to solve energy inefficiencies detection problem in smartbuildings. This solution is based on a rule-based system developed through data mining techniques andapplying the knowledge of energy efficiency experts. A set of useful energy efficiency indicators is alsoproposed to detect anomalies. The data mining system is developed through the knowledge extracted bya full set of building sensors. So, the results of this process provide a set of rules that are used as a partof a decision support system for the optimisation of energy consumption and the detection of anomaliesin smart buildings.ComisiĆ³n Europea FP7-28522
    • ā€¦
    corecore