87,546 research outputs found

    ATLAS: A flexible and extensible architecture for linguistic annotation

    Full text link
    We describe a formal model for annotating linguistic artifacts, from which we derive an application programming interface (API) to a suite of tools for manipulating these annotations. The abstract logical model provides for a range of storage formats and promotes the reuse of tools that interact through this API. We focus first on ``Annotation Graphs,'' a graph model for annotations on linear signals (such as text and speech) indexed by intervals, for which efficient database storage and querying techniques are applicable. We note how a wide range of existing annotated corpora can be mapped to this annotation graph model. This model is then generalized to encompass a wider variety of linguistic ``signals,'' including both naturally occuring phenomena (as recorded in images, video, multi-modal interactions, etc.), as well as the derived resources that are increasingly important to the engineering of natural language processing systems (such as word lists, dictionaries, aligned bilingual corpora, etc.). We conclude with a review of the current efforts towards implementing key pieces of this architecture.Comment: 8 pages, 9 figure

    Image databases: Problems and perspectives

    Get PDF
    With the increasing number of computer graphics, image processing, and pattern recognition applications, economical storage, efficient representation and manipulation, and powerful and flexible query languages for retrieval of image data are of paramount importance. These and related issues pertinent to image data bases are examined

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    Learning Hypergraph-regularized Attribute Predictors

    Full text link
    We present a novel attribute learning framework named Hypergraph-based Attribute Predictor (HAP). In HAP, a hypergraph is leveraged to depict the attribute relations in the data. Then the attribute prediction problem is casted as a regularized hypergraph cut problem in which HAP jointly learns a collection of attribute projections from the feature space to a hypergraph embedding space aligned with the attribute space. The learned projections directly act as attribute classifiers (linear and kernelized). This formulation leads to a very efficient approach. By considering our model as a multi-graph cut task, our framework can flexibly incorporate other available information, in particular class label. We apply our approach to attribute prediction, Zero-shot and NN-shot learning tasks. The results on AWA, USAA and CUB databases demonstrate the value of our methods in comparison with the state-of-the-art approaches.Comment: This is an attribute learning paper accepted by CVPR 201
    corecore