558,949 research outputs found

    Codon usage analysis of prokaryotic mechanosensation genes

    Get PDF
    [Abstract]: In the present study, we examined GC nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI) and gene length for 308 prokaryotic mechanosensitive ion channel (MSC) genes from six evolutionary groups: Euryarchaeota, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria. Results showed that 1). a wide variation of overrepresentation of nucleotides exists in the MSC genes; 2). codon usage bias varies considerably among the MSC genes; 3). both nucleotide constraint and gene length play an important role in shaping codon usage of the bacterial MSC genes and 4). synonymous codon usage of prokaryotic MSC genes is phylogenetically conserved. Knowledge of codon usage in prokaryotic MSC genes may benefit for the study of the MSC genes in eukaryotes in which few MSC genes have been identified and functionally analysed

    RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells

    Get PDF
    Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of β-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation

    Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells.

    Get PDF
    Many therapies using mesenchymal stem cells (MSC) rely on their ability to produce and release paracrine signals with chemotactic and pro-angiogenic activity. These characteristics, however, are mostly studied under standard in vitro culture conditions. In contrast, various novel cell-based therapies imply pre-seeding MSC into bio-artificial scaffolds. Here we describe human bone marrow-derived MSC seeded in Integra matrices, a common type of scaffold for dermal regeneration (SDR). We show and measured the distribution of MSC within the SDR, where cells clearly establish physical interactions with the scaffold, exhibiting constant metabolic activity for at least 15 days. In the SDR, MSC secrete VEGF and SDF-1α and induce transwell migration of CD34(+) hematopoietic/endothelial progenitor cells, which is inhibited in the presence of a CXCR4/SDF-1α antagonist. MSC in SDR respond to hypoxia by altering levels of angiogenic signals such as Angiogenin, Serpin-1, uPA, and IL-8. Finally, we show that MSC-containing SDR that have been pre-incubated in hypoxia show higher infiltration of endothelial cells after implantation into immune deficient mice. Our data show that MSC are fully functional ex vivo when implanted into SDR. In addition, our results strongly support the notion of hypoxic pre-conditioning MSC-containing SDR, in order to promote angiogenesis in the wounds

    Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease.

    Get PDF
    There is much interest in the use of mesenchymal stem cells/marrow stromal cells (MSC) to treat neurodegenerative disorders, in particular those that are fatal and difficult to treat, such as Huntington's disease. MSC present a promising tool for cell therapy and are currently being tested in FDA-approved phase I-III clinical trials for many disorders. In preclinical studies of neurodegenerative disorders, MSC have demonstrated efficacy, when used as delivery vehicles for neural growth factors. A number of investigators have examined the potential benefits of innate MSC-secreted trophic support and augmented growth factors to support injured neurons. These include overexpression of brain-derived neurotrophic factor and glial-derived neurotrophic factor, using genetically engineered MSC as a vehicle to deliver the cytokines directly into the microenvironment. Proposed regenerative approaches to neurological diseases using MSC include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation, MSC in the brain promote endogenous neuronal growth, encourage synaptic connection from damaged neurons, decrease apoptosis, reduce levels of free radicals, and regulate inflammation. These abilities are primarily modulated through paracrine actions. Clinical trials for MSC injection into the central nervous system to treat amyotrophic lateral sclerosis, traumatic brain injury, and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of Huntington's disease is discussed

    The impact of communities of practice on masters dissertations: a small scale case Study of MSc project management students

    Get PDF
    Communities of Practice (CoPs) are known to increase knowledge sharing and personal development. In this pilot study in a UK higher education institution, we explored using CoPs with Postgraduate (Masters and PhD) students with a view to investigating the CoPs’ impact on the Masters students’ dissertation engagement and achievement. We conducted action research, forming 4 CoPs, each including 1 PhD student and approximately 3 MSc students. We analysed the 11 MSc Project Management students’ engagement, results and feedback and the 4 Project Management PhD researchers’ feedback using mixed methods from questionnaires, feedback forums and quantitative analysis of dissertation results (marks). We found four categories of outcome: (i) MSc students’ mode of communication with their CoP; (ii) MSc students’ contribution to their CoP; (iii) benefits to MSc students; and (iv) impact on MSc dissertation results. Our outcomes show that the CoP had an impact on MSc student engagement and performance, and indicate CoPs as worthy of further investigation for enhancing students’ learning experience

    Long-time effects of an experimental therapy with mesenchymal stem cells in congenital hydrocephalus

    Get PDF
    Introduction: Bone marrow-derived mesenchymal stem cells (BM-MSC) are a potential therapeutic tool due to their ability for migrating and producing neuroprotector factors when they are transplanted in other neurodegenerative diseases. Moreover, some investigations have shown that BM-MSC are able to modulate astrocyte activation and neuroprotector factor production. The aim of this study was to evaluate the long-time effects of a BM-MSC experimental therapy in the hyh mouse model of congenital hydrocephalus. Methods: BM-MSC were characterized in vitro and then transplanted into the ventricles of young hydrocephalic hyh mice, before they develop the severe hydrocephalus. Non-hydrocephalic normal mice (wt) and hydrocephalic hyh mice sham-injected (sterile saline serum) were used as controls. Samples were studied by analyzing and comparing mRNA, protein level expressions and immunoreaction related with the progression and severity of hydrocephalus. Results: Fourteen days after transplantation, hydrocephalic hyh mice with BM-MSC showed lower ventriculomegaly. In these animals, BM-MSC were found undifferentiated and spread into the periventricular astrocyte reaction. There, BM-MSC were detected producing several neuroprotector factors (BDNF, GDNF, NGF, VEGF), in the same way as reactive astrocytes. Total neocortical levels of NGF, TGF-β and VEGF were found increased in hydrocephalic hyh mice transplanted with BM-MSC. Furthermore, astrocytes showed increased expressions of aquaporin-4 (water channel protein) and Slit-2 (neuroprotective and anti-inflammatory molecule). Conclusions: BM-MSC seem to lead to recovery of the severe neurodegenerative conditions associated to congenital hydrocephalus mediated by reactive astrocytes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. PI15/0619 (ISCIII/FEDER

    Good Publication Practice: Maintaining the Integrity of Scientific Communications

    Get PDF

    An Evaluation of the Sustainability of Global Tuna Stocks Relative to Marine Stewardship Council Criteria

    Get PDF
    The Marine Stewardship Council (MSC) has established a program whereby a fishery may be certified as being sustainable. The sustainability of a fishery is defined by MSC criteria which are embodied in three Principles: relating to the status of the stock, the ecosystem of which the stock is a member and the fishery management system. Since many of these MSC criteria are comparable for global tuna stocks, the MSC scoring system was used to evaluate nineteen stocks of tropical and temperate tunas throughout the world and to evaluate the management systems of the Regional Fishery Management Organizations (RFMO) associated with these stocks

    Bone marrow-derived mesenchymal stem cells characterization and transplantation in an animal model of congenital hydrocephalus

    Get PDF
    Congenital hydrocephalus is a disorder presenting a degeneration of the periventricular cerebral parenchyma and the white matter, which causes significant mortality and life-long neurological complications. There are currently no effective therapies for congenital hydrocephalus. Bone marrow-derived mesenchymal stem cells (BM-MSC) are considered as a potential therapeutic tool in neurodegenerative diseases, due to their ability to migrate to degenerated tissues and the production of growth factors. In the present study, using an animal model of congenital hydrocephalus, the hyh mouse, it has been studied the capacity of the BM-MSC to reach the degenerated regions exhibiting glial reactions and their probable neuroprotector effects. The BM-MSC were isolated from two different sources: a) transgenic mice expressing the monomeric red fluorescent protein (mRFP1); b) wild type mice. In the second case, the BM-MSC were labelled in vitro using bromodeoxyuridine, a fluorescent cell tracker and the lipophilic DiR. Before application, the cells were analysed using flow cytometry and immunofluorescence. The BM-MSC were injected into the retro-orbital sinus or into the lateral ventricle of hyh mice. After 24/96 hours of administration, the BM-MSC were detected under light, confocal and electron microscopes. The injected BM-MSC reached the degenerated periventricular regions and the disrupted neurogenic niches. They were detected in the periventricular parenchyma, around periventricular blood vessels and in the ventral meninges. Most of the applied BM-MSC expressed the glial cell-derived neurotrophic factor (GDNF), in the same way as the periventricular reactive astrocytes, suggesting a possible neuroprotector effect.FIS (Instituto de Salud Carlos III)-FEDER a AJJ. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
    • …
    corecore