4,545 research outputs found

    Annotated Bibliography: Anticipation

    Get PDF

    Cognición y representación interna de entornos dinámicos en el cerebro de los mamíferos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Biológicas, leída el 07/05/2021El tiempo es una de las dimensiones fundamentales de la realidad. Paradójicamente, los fenómenos temporales del mundo natural contienen ingentes cantidades de información redundante, y a pesar de ello, codificar internamente el tiempo en el cerebro es imprescindible para anticiparse a peligros en ambientes dinámicos. No obstante, dedicar grandes cantidades de recursos cognitivos a procesar las características espacio-temporales de entornos complejos debería ser incompatible con la supervivencia, que requiere respuestas rápidas. Aun así, los animales son capaces de tomar decisiones en intervalos de tiempo muy estrechos. ¿Cómo consigue hacer esto el cerebro? Como respuesta al balance entre complejidad y velocidad, la hipótesis de la compactación del tiempo propone que el cerebro no codifica el tiempo explícitamente, sino que lo integra en el espacio. En teoría, la compactación del tiempo simplifica las representaciones internas del entorno, reduciendo significativamente la carga de trabajo dedicada a la planificación y la toma de decisiones. La compactación del tiempo proporciona un marco operativo que pretende explicar cómo las situaciones dinámicas, percibidas o producidas, se representan cognitivamente en forma de predicciones espaciales o representaciones internas compactas (CIR), que pueden almacenarse en la memoria y recuperarse más adelante para generar respuestas. Aunque la compactación del tiempo ya ha sido implementada en robots, hasta ahora no se había comprobado su existencia como mecanismo biológico y cognitivo en el cerebro...Time is one of the most prominent dimensions that organize reality. Paradoxically, there are loads of redundant information contained within the temporal features of the natural world, and yet internal coding of time in the brain seems to be crucial for anticipating time-changing, dynamic hazards. Allocating such significant brain resources to process spatiotemporal aspects of complex environments should apparently be incompatible with survival, which requires fast and accurate responses. Nonetheless, animals make decisions under pressure and in narrow time windows. How does the brain achieve this? An effort to resolve the complexity-velocity trade-off led to a hypothesis called time compaction, which states the brain does not encode time explicitly but embeds it into space. Theoretically, time compaction can significantly simplify internal representations of the environment and hence ease the brain workload devoted to planning and decision-making. Time compaction also provides an operational framework that aims to explain how perceived and produced dynamic situations are cognitively represented, in the form of spatial predictions or compact internal representations (CIRs) that can be stored in memory and be used later on to guide behaviour and generate action. Although successfully implemented in robots, time compaction still lacked assessment of its biological soundness as an actual cognitive mechanism in the brain...Fac. de Ciencias BiológicasTRUEunpu

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    A white paper: NASA virtual environment research, applications, and technology

    Get PDF
    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)

    Get PDF
    This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    MetaAgents: Simulating Interactions of Human Behaviors for LLM-based Task-oriented Coordination via Collaborative Generative Agents

    Full text link
    Significant advancements have occurred in the application of Large Language Models (LLMs) for various tasks and social simulations. Despite this, their capacities to coordinate within task-oriented social contexts are under-explored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behavior and produce meaningful results. To bridge this gap, we introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities. We situate these agents in a simulated job fair environment as a case study to scrutinize their coordination skills. We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills. Our evaluation demonstrates that these agents show promising performance. However, we also uncover limitations that hinder their effectiveness in more complex coordination tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations

    Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes

    Get PDF
    Sleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes

    Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    Get PDF
    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids
    corecore