14,555 research outputs found

    Black-hole horizon and metric singularity at the brane separating two sliding superfluids

    Get PDF
    An analog of black hole can be realized in the low-temperature laboratory. The horizon can be constructed for the `relativistic' ripplons (surface waves) living on the brane. The brane is represented by the interface between two superfluid liquids, 3He-A and 3He-B, sliding along each other without friction. Similar experimental arrangement has been recently used for the observation and investigation of the Kelvin-Helmholtz type of instability in superfluids (cond-mat/0111343). The shear-flow instability in superfluids is characterized by two critical velocities. The lowest threshold measured in recent experiments (cond-mat/0111343) corresponds to appearance of the ergoregion for ripplons. In the modified geometry this will give rise to the black-hole event horizon in the effective metric experienced by ripplons. In the region behind the horizon, the brane vacuum is unstable due to interaction with the higher-dimensional world of bulk superfluids. The time of the development of instability can be made very long at low temperature. This will allow us to reach and investigate the second critical velocity -- the proper Kelvin-Helmholtz instability threshold. The latter corresponds to the singularity inside the black hole, where the determinant of the effective metric becomes infinite.Comment: LaTeX file, 12 pages, 3 Figures, version accepted in JETP Letter

    Superfluid analogies of cosmological phenomena

    Full text link
    Superfluid 3He-A gives example of how chirality, Weyl fermions, gauge fields and gravity appear in low energy corner together with corresponding symmetries, including Lorentz symmetry and local SU(N). This supports idea that quantum field theory (Standard Model or GUT) is effective theory describing low-energy phenomena. * Momentum space topology of fermionic vacuum provides topological stability of universality class of systems, where above properties appear. * BCS scheme for 3He-A incorporates both ``relativistic'' infrared regime and ultraviolet ``transplanckian'' range: subtle issues of cut-off in quantum field theory and anomalies can be resolved on physical grounds. This allows to separate ``renormalizable'' terms in action, treated by effective theory, from those obtained only in ``transPlanckian'' physics. * Energy density of superfluid vacuum within effective theory is ~ E_{Planck}^4. Stability analysis of ground state beyond effective theory leads to exact nullification of vacuum energy: equilibrium vacuum is not gravitating. In nonequilibrium, vacuum energy is of order energy density of matter. * 3He-A provides experimental prove for anomalous nucleation of fermionic charge according to Adler-Bell-Jackiw. * Helical instability in 3He-A is described by the same equations as formation of magnetic field by right electrons in Joyce-Shaposhnikov scenario. * Macroscopic parity violating effect and angular momentum paradox are both desribed by axial gravitational Chern-Simons action. * High energy dispersion of quasiparticle spectrum allow to treat problems of vacuum in presence of event horizon, etc.Comment: draft of review for Physics Reports, RevTex file, 113 pages, 26 figures; new sections and references are adde

    Contingency Model Predictive Control for Automated Vehicles

    Full text link
    We present Contingency Model Predictive Control (CMPC), a novel and implementable control framework which tracks a desired path while simultaneously maintaining a contingency plan -- an alternate trajectory to avert an identified potential emergency. In this way, CMPC anticipates events that might take place, instead of reacting when emergencies occur. We accomplish this by adding an additional prediction horizon in parallel to the classical receding MPC horizon. The contingency horizon is constrained to maintain a feasible avoidance solution; as such, CMPC is selectively robust to this emergency while tracking the desired path as closely as possible. After defining the framework mathematically, we demonstrate its effectiveness experimentally by comparing its performance to a state-of-the-art deterministic MPC. The controllers drive an automated research platform through a left-hand turn which may be covered by ice. Contingency MPC prepares for the potential loss of friction by purposefully and intuitively deviating from the prescribed path to approach the turn more conservatively; this deviation significantly mitigates the consequence of encountering ice.Comment: American Control Conference, July 2019; 6 page
    • …
    corecore