25,283 research outputs found

    Continuous symmetry reduction and return maps for high-dimensional flows

    Full text link
    We present two continuous symmetry reduction methods for reducing high-dimensional dissipative flows to local return maps. In the Hilbert polynomial basis approach, the equivariant dynamics is rewritten in terms of invariant coordinates. In the method of moving frames (or method of slices) the state space is sliced locally in such a way that each group orbit of symmetry-equivalent points is represented by a single point. In either approach, numerical computations can be performed in the original state-space representation, and the solutions are then projected onto the symmetry-reduced state space. The two methods are illustrated by reduction of the complex Lorenz system, a 5-dimensional dissipative flow with rotational symmetry. While the Hilbert polynomial basis approach appears unfeasible for high-dimensional flows, symmetry reduction by the method of moving frames offers hope.Comment: 32 pages, 7 figure

    Basic gestures as spatiotemporal reference frames for repetitive dance/music patterns in samba and charleston

    Get PDF
    THE GOAL OF THE PRESENT STUDY IS TO GAIN BETTER insight into how dancers establish, through dancing, a spatiotemporal reference frame in synchrony with musical cues. With the aim of achieving this, repetitive dance patterns of samba and Charleston were recorded using a three-dimensional motion capture system. Geometric patterns then were extracted from each joint of the dancer's body. The method uses a body-centered reference frame and decomposes the movement into non-orthogonal periodicities that match periods of the musical meter. Musical cues (such as meter and loudness) as well as action-based cues (such as velocity) can be projected onto the patterns, thus providing spatiotemporal reference frames, or 'basic gestures,' for action-perception couplings. Conceptually speaking, the spatiotemporal reference frames control minimum effort points in action-perception couplings. They reside as memory patterns in the mental and/or motor domains, ready to be dynamically transformed in dance movements. The present study raises a number of hypotheses related to spatial cognition that may serve as guiding principles for future dance/music studies

    On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain

    Full text link
    The continuous and discrete symmetries of the Kuramoto-Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its chaotic dynamics. The continuous spatial translation symmetry leads to relative equilibrium (traveling wave) and relative periodic orbit (modulated traveling wave) solutions. The discrete symmetries lead to existence of equilibrium and periodic orbit solutions, induce decomposition of state space into invariant subspaces, and enforce certain structurally stable heteroclinic connections between equilibria. We show, on the example of a particular small-cell Kuramoto-Sivashinsky system, how the geometry of its dynamical state space is organized by a rigid `cage' built by heteroclinic connections between equilibria, and demonstrate the preponderance of unstable relative periodic orbits and their likely role as the skeleton underpinning spatiotemporal turbulence in systems with continuous symmetries. We also offer novel visualizations of the high-dimensional Kuramoto-Sivashinsky state space flow through projections onto low-dimensional, PDE representation independent, dynamically invariant intrinsic coordinate frames, as well as in terms of the physical, symmetry invariant energy transfer rates.Comment: 31 pages, 17 figures; added references, corrected typos. Due to file size restrictions some figures in this preprint are of low quality. A high quality copy may be obtained from http://www.cns.gatech.edu/~predrag/papers/preprints.html#rp

    Curve and surface framing for scientific visualization and domain dependent navigation

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Science, 1996Curves and surfaces are two of the most fundamental types of objects in computer graphics. Most existing systems use only the 3D positions of the curves and surfaces, and the 3D normal directions of the surfaces, in the visualization process. In this dissertation, we attach moving coordinate frames to curves and surfaces, and explore several applications of these frames in computer graphics and scientific visualization. Curves in space are difficult to perceive and analyze, especially when they are densely clustered, as is typical in computational fluid dynamics and volume deformation applications. Coordinate frames are useful for exposing the similarities and differences between curves. They are also useful for constructing ribbons, tubes and smooth camera orientations along curves. In many 3D systems, users interactively move the camera around the objects with a mouse or other device. But all the camera control is done independently of the properties of the objects being viewed, as if the user is flying freely in space. This type of domain-independent navigation is frequently inappropriate in visualization applications and is sometimes quite difficult for the user to control. Another productive approach is to look at domain-specific constraints and thus to create a new class of navigation strategies. Based on attached frames on surfaces, we can constrain the camera gaze direction to be always parallel (or at a fixed angle) to the surface normal. Then users will get a feeling of driving on the object instead of flying through the space. The user's mental model of the environment being visualized can be greatly enhanced by the use of these constraints in the interactive interface. Many of our research ideas have been implemented in Mesh View, an interactive system for viewing and manipulating geometric objects. It contains a general purpose C++ library for nD geometry and supports a winged-edge based data structure. Dozens of examples of scientifically interesting surfaces have been constructed and included with the system

    Dynamic perceptual mapping

    Get PDF
    Perceptual maps have been used for decades by market researchers to illuminate them about the similarity between brands in terms of a set of attributes, to position consumers relative to brands in terms of their preferences, or to study how demographic and psychometric variables relate to consumer choice. Invariably these maps are two-dimensional and static. As we enter the era of electronic publishing, the possibilities for dynamic graphics are opening up. We demonstrate the usefulness of introducing motion into perceptual maps through four examples. The first example shows how a perceptual map can be viewed in three dimensions, and the second one moves between two analyses of the data that were collected according to different protocols. In a third example we move from the best view of the data at the individual level to one which focuses on between-group differences in aggregated data. A final example considers the case when several demographic variables or market segments are available for each respondent, showing an animation with increasingly detailed demographic comparisons. These examples of dynamic maps use several data sets from marketing and social science research.Animation, brand-attribute maps, correspondence analysis, multidimensional scaling, perceptual map, visualization
    • …
    corecore