1,486 research outputs found

    ReMotENet: Efficient Relevant Motion Event Detection for Large-scale Home Surveillance Videos

    Full text link
    This paper addresses the problem of detecting relevant motion caused by objects of interest (e.g., person and vehicles) in large scale home surveillance videos. The traditional method usually consists of two separate steps, i.e., detecting moving objects with background subtraction running on the camera, and filtering out nuisance motion events (e.g., trees, cloud, shadow, rain/snow, flag) with deep learning based object detection and tracking running on cloud. The method is extremely slow and therefore not cost effective, and does not fully leverage the spatial-temporal redundancies with a pre-trained off-the-shelf object detector. To dramatically speedup relevant motion event detection and improve its performance, we propose a novel network for relevant motion event detection, ReMotENet, which is a unified, end-to-end data-driven method using spatial-temporal attention-based 3D ConvNets to jointly model the appearance and motion of objects-of-interest in a video. ReMotENet parses an entire video clip in one forward pass of a neural network to achieve significant speedup. Meanwhile, it exploits the properties of home surveillance videos, e.g., relevant motion is sparse both spatially and temporally, and enhances 3D ConvNets with a spatial-temporal attention model and reference-frame subtraction to encourage the network to focus on the relevant moving objects. Experiments demonstrate that our method can achieve comparable or event better performance than the object detection based method but with three to four orders of magnitude speedup (up to 20k times) on GPU devices. Our network is efficient, compact and light-weight. It can detect relevant motion on a 15s surveillance video clip within 4-8 milliseconds on a GPU and a fraction of second (0.17-0.39) on a CPU with a model size of less than 1MB.Comment: WACV1

    A Neural Network Method for Classification of Sunlit and Shaded Components of Wheat Canopies in the Field Using High-Resolution Hyperspectral Imagery

    Get PDF
    (1) Background: Information rich hyperspectral sensing, together with robust image analysis, is providing new research pathways in plant phenotyping. This combination facilitates the acquisition of spectral signatures of individual plant organs as well as providing detailed information about the physiological status of plants. Despite the advances in hyperspectral technology in field-based plant phenotyping, little is known about the characteristic spectral signatures of shaded and sunlit components in wheat canopies. Non-imaging hyperspectral sensors cannot provide spatial information; thus, they are not able to distinguish the spectral reflectance differences between canopy components. On the other hand, the rapid development of high-resolution imaging spectroscopy sensors opens new opportunities to investigate the reflectance spectra of individual plant organs which lead to the understanding of canopy biophysical and chemical characteristics. (2) Method: This study reports the development of a computer vision pipeline to analyze ground-acquired imaging spectrometry with high spatial and spectral resolutions for plant phenotyping. The work focuses on the critical steps in the image analysis pipeline from pre-processing to the classification of hyperspectral images. In this paper, two convolutional neural networks (CNN) are employed to automatically map wheat canopy components in shaded and sunlit regions and to determine their specific spectral signatures. The first method uses pixel vectors of the full spectral features as inputs to the CNN model and the second method integrates the dimension reduction technique known as linear discriminate analysis (LDA) along with the CNN to increase the feature discrimination and improves computational efficiency. (3) Results: The proposed technique alleviates the limitations and lack of separability inherent in existing pre-defined hyperspectral classification methods. It optimizes the use of hyperspectral imaging and ensures that the data provide information about the spectral characteristics of the targeted plant organs, rather than the background. We demonstrated that high-resolution hyperspectral imagery along with the proposed CNN model can be powerful tools for characterizing sunlit and shaded components of wheat canopies in the field. The presented method will provide significant advances in the determination and relevance of spectral properties of shaded and sunlit canopy components under natural light conditions

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation

    Convolutional Neural Networks - Generalizability and Interpretations

    Get PDF

    Naval Mine Detection and Seabed Segmentation in Sonar Images with Deep Learning

    Get PDF
    Underwater mines are a cost-effective method in asymmetric warfare, and are commonly used to block shipping lanes and restrict naval operations. Consequently, they threaten commercial and military vessels, disrupt humanitarian aids, and damage sea environments. There is a strong international interest in using sonars and AI for mine countermeasures and undersea surveillance. High-resolution imaging sonars are well-suited for detecting underwater mines and other targets. Compared to other sensors, sonars are more effective for undersea environments with low visibility. This project aims to investigate deep learning algorithms for two important tasks in undersea surveillance: naval mine detection and seabed terrain segmentation. Our goal is to automatically classify the composition of the seabed and localise naval mines. This research utilises the real sonar data provided by the Defence Science and Technology Group (DSTG). To conduct the experiments, we annotated 150 sonar images for semantic segmentation; the annotation is guided by experts from the DSTG.We also used 152 sonar images with mine detection annotations prepared by members of Centre for Signal and Information Processing at the University of Wollongong. Our results show Faster-RCNN to achieve the highest performance in object detection. We evaluated transfer learning and data augmentation for object detection. Each method improved our detection models mAP by 11.9% and 16.9% and mAR by 17.8% and 21.1%, respectively. Furthermore, we developed a data augmentation algorithm called Evolutionary Cut-Paste which yielded a 20.2% increase in performance. For segmentation, we found highly-tuned DeepLabV3 and U-Nett++models perform best. We evaluate various configurations of optimisers, learning rate schedules and encoder networks for each model architecture. Additionally, model hyper-parameters are tuned prior to training using various tests. Finally, we apply Median Frequency Balancing to mitigate model bias towards frequently occurring classes. We favour DeepLabV3 due to its reliable detection of underrepresented classes as opposed to the accurate boundaries produced by U-Nett++. All of the models satisfied the constraint of real-time operation when running on an NVIDIA GTX 1070

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal
    • …
    corecore